scholarly journals Stress-free measurement of body temperature of pigs by using thermal imaging – Useful fact or wishful thinking

2022 ◽  
Vol 193 ◽  
pp. 106656
Author(s):  
Marina Stukelj ◽  
Melita Hajdinjak ◽  
Igor Pusnik
2013 ◽  
Vol 13 (02) ◽  
pp. 1350045 ◽  
Author(s):  
E. F. J. RING ◽  
A. JUNG ◽  
B. KALICKI ◽  
J. ZUBER ◽  
A. RUSTECKA ◽  
...  

Infrared thermal imaging has in recent years become more accessible and affordable as a means of remote sensing for human body temperature such as in identifying a person with fever. The implementation and operational guidelines for identifying a febrile human using a screening thermograph as documented in the ISO/TR 13154:2009 ISO/TR 80600 has been deployed for the screening of a total of 402 children. It was found that there was a significant difference between the temperatures measured in non-fevered patients and those with known fever, with the thermal imaging of the eye region being the most rapid non-contact site for measurement.


2014 ◽  
Vol 54 (9) ◽  
pp. 1497 ◽  
Author(s):  
S. A. McCoard ◽  
H. V. Henderson ◽  
F. W. Knol ◽  
S. K. Dowling ◽  
J. R. Webster

The combination of heat generation and reducing heat loss from the skin surface is important for maintaining core body temperature in a neonate. Thermogenesis studies traditionally focus on measurement of core body temperature but not the contribution of radiated heat loss at the skin surface. This study aimed to evaluate the utility of using thermal imaging to measure radiated heat loss in newborn lambs. Continuous thermal images of newborn lambs were captured for 30 min each during the baseline (11−18°C), cold-exposure (0°C) and recovery (11−18°C) periods by using an infrared camera. Core body temperature measured by rectal thermometer was also recorded at the end of each period. In all, 7 of the 10 lambs evaluated had reduced rectal temperatures (0.4−1°C) between the baseline and recovery periods, while three maintained body temperature despite cold exposure. During the baseline period, infrared heat loss was relatively stable, followed by a rapid decrease of 5°C within 5 min of cold exposure. Heat loss continued to decrease linearly in the cold-exposure period by a further 10°C, but increased rapidly to baseline levels during the recovery period. A temperature change of between 20°C and 35°C was observed during the study, which was likely to be due to changes in vasoconstriction in the skin to conserve heat. The present study has highlighted the sensitivity of infrared thermal imaging to estimate heat loss from the skin in the newborn lamb and shown that rapid changes in heat loss occur in response to cold exposure.


2017 ◽  
Vol 69 ◽  
pp. 118-123 ◽  
Author(s):  
Robin B. Knobel-Dail ◽  
Diane Holditch-Davis ◽  
Richard Sloane ◽  
B.D. Guenther ◽  
Laurence M. Katz

Author(s):  
Wai Kit Wong ◽  
Nur Izzati Nadiah Binti Ishak ◽  
Heng Siong Lim ◽  
Jalil bin Md Desa

Some infectious diseases can spread rapidly via a community of human or animals or both, either through airborne particles or viruses. Such rapid spread diseases may become a local, national or international widespread and contagious threat. As a symptom of infection, the body temperature of a disease carrier is higher than normal people. In this chapter, flu detection system using thermal imaging tool and computer vision techniques are discussed. An automatic flu detection method adopting human object extraction algorithm and fuzzy logic based Viola Jones algorithm are also discussed. The proposed system able to capture a thermogram of the human subject, detecting the eye region of the human subject, calculating the pixels values around the detected eye region, converted to temperature readings and further classified the subject's body temperature whether the subject satisfies a flu condition or not. Experimental results also shown that the proposed fuzzy logic based Viola Jones algorithm can trace out flu infectious personal from the input thermal images up to 80% of accuracy.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1094 ◽  
Author(s):  
Edward Narayan ◽  
Annabella Perakis ◽  
Will Meikle

Non-invasive techniques can be applied for monitoring the physiology and behaviour of wildlife in Zoos to improve management and welfare. Thermal imaging technology has been used as a non-invasive technique to measure the body temperature of various domesticated and wildlife species. In this study, we evaluated the application of thermal imaging to measure the body temperature of koalas (Phascolarctos cinereus) in a Zoo environment. The aim of the study was to determine the body feature most suitable for recording a koala’s body temperature (using coefficient of variation scores). We used a FLIR530TM IR thermal imaging camera to take images of each individual koala across three days in autumn 2018 at the Wildlife Sydney Zoo, Australia. Our results demonstrated that koalas had more than one reliable body feature for recording body temperature using the thermal imaging tool—the most reliable features were eyes and abdomen. This study provides first reported application of thermal imaging on an Australian native species in a Zoo and demonstrates its potential applicability as a humane/non-invasive technique for assessing the body temperature as an index of stress.


2006 ◽  
Vol 158 (10) ◽  
pp. 331-334 ◽  
Author(s):  
P. D. Warriss ◽  
S. J. Pope ◽  
S. N. Brown ◽  
L. J. Wilkins ◽  
T. G. Knowles

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241843
Author(s):  
Matthew Charlton ◽  
Sophie A. Stanley ◽  
Zoë Whitman ◽  
Victoria Wenn ◽  
Timothy J. Coats ◽  
...  

Background The measurement of body temperature has become commonplace in the current COVID-19 pandemic. Body temperature can be measured using thermal infrared imaging, a safe, non-contact method that relies on the emissivity of the skin being known to provide accurate readings. Skin pigmentation affects the absorption of visible light and enables us to see variations in skin colour. Pigmentation may also affect the absorption of infrared radiation and thus affect thermal imaging. Human skin has an accepted emissivity of 0.98 but the effect of different skin pigmentation on this value is not known. In this study, we investigated the influence of different skin pigmentation on thermal emissivity in 65 adult volunteers. Methods A reference object of known emissivity (electrical tape) was applied to participant’s skin on the inner upper arm. Tape and arm were imaged simultaneously using a thermal infrared camera. The emissivity was set on the camera to the known value for electrical tape. The emissivity was altered manually until the skin temperature using thermal imaging software was equal to the initial tape temperature. This provided the calculated emissivity value of the skin. Participants were grouped according to skin pigmentation, quantified using the Fitzpatrick skin phototyping scale and reflectance spectrophotometry. Differences in emissivity values between skin pigmentation groups were assessed by one-way ANOVA. Results The mean calculated emissivity for the 65 participants was 0.972 (range 0.96–0.99). No significant differences in emissivity were observed between participants when grouped by skin pigmentation according to the Fitzpatrick scale (p = 0.859) or reflectance spectrophotometry (p = 0.346). Conclusion These data suggest that skin pigmentation does not affect thermal emissivity measurement of skin temperature using thermal infrared imaging. This study will aid further research into the application of thermal infrared imaging as a screening or bedside diagnostic tool in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document