scholarly journals Assessing the accuracy and efficiency of different order implicit and explicit integration schemes

2022 ◽  
Vol 141 ◽  
pp. 104531
Author(s):  
Martí Lloret-Cabot ◽  
Daichao Sheng
2018 ◽  
Vol 9 (4) ◽  
pp. 465-474 ◽  
Author(s):  
Evangelos Gavalas ◽  
Ioannis Pressas ◽  
Spyros Papaefthymiou

Purpose The purpose of this paper is to compare the performance of implicit and explicit integration schemes for simulating the metal rolling process using commercial software packages ANSYS™ and LS-DYNA™. Design/methodology/approach For the industrial application of finite element method, the time discretization is one of the most important factors that determine the stability and efficiency of the analysis. An iterative approach, which is unconditionally stable in linear analyses, is the obvious choice for a quasi-static problem such as metal rolling. However, this approach may be challenging in achieving convergence with non-linear material behavior and complicated contact conditions. Therefore, a non-iterative method is usually adopted, in order to achieve computational accuracy through very small time steps. Models using both methods were constructed and compared for computational efficiency. Findings The results indicate that the explicit method yields higher levels of efficiency compared to the implicit method as model complexity increases. Furthermore, the implicit method displayed instabilities and numerical difficulties in certain load conditions further disfavoring the solver’s performance. Originality/value Comparison of the implicit and explicit procedures for time stepping was applied in 3D finite element analysis of the plate rolling process in order to evaluate and quantify the computational efficiency.


1986 ◽  
Vol 65 (2) ◽  
pp. 253-272 ◽  
Author(s):  
L. Garcia ◽  
H.R. Hicks ◽  
B.A. Carreras ◽  
L.A. Charlton ◽  
J.A. Holmes

2020 ◽  
Vol 20 (13) ◽  
pp. 2041003 ◽  
Author(s):  
Wooram Kim ◽  
J. N. Reddy

In this paper, a number of recently proposed implicit and explicit composite time integration schemes are reviewed and critically evaluated. To give suitable guidelines of using them in practical transient analyses of structural problems, numerical performances of these schemes are compared through illustrative examples. Meaningful insights into computational aspects of the composite schemes are also provided. In the discussion, the role of the splitting ratio of the recent composite schemes is also investigated through a different point of view, and similarities and differences of various composite schemes are also studied. It is shown that the explicit composite scheme proposed recently by the authors can noticeably increase the efficiency and the accuracy of linear and nonlinear transient analyses when compared with other well-known composite schemes.


Author(s):  
J. M. Rodriguez ◽  
S. Larsson ◽  
J. M. Carbonell ◽  
P. Jonsén

AbstractThis work presents the development of an explicit/implicit particle finite element method (PFEM) for the 2D modeling of metal cutting processes. The purpose is to study the efficiency of implicit and explicit time integration schemes in terms of precision, accuracy and computing time. The formulation for implicit and explicit time marching schemes is developed, and a detailed study on the explicit solution steps is presented. The PFEM remeshing procedures for insertion and removal of particles have been improved to model the multiple scales of time and/or space of the solution. The detection and treatment of the rigid tool contact are presented for both, implicit and explicit schemes. The performance of explicit/implicit integration is studied with a set of different two-dimensional orthogonal cutting tests of AISI 4340 steel at cutting speeds ranging from 1 m/s up to 30 m/s. It was shown that if the correct selection of the time integration scheme is made, the computing time can decrease up to 40 times. It allows us to affirm that the computing time of the PFEM simulations can be excessive due to the used time marching scheme independently of the meshing process. As a practical result, a set of recommendations to select the time integration schemes for a given cutting speed are given. This is intended to minimize one of the negative constraints pointed out by the industry when using metal cutting simulators.


Sign in / Sign up

Export Citation Format

Share Document