Numerical study on P-wave propagation across the jointed rock masses by the combined finite-discrete element method

2022 ◽  
Vol 142 ◽  
pp. 104554
Author(s):  
Chenyu Xu ◽  
Quansheng Liu ◽  
Jian Wu ◽  
Penghai Deng ◽  
Ping Liu ◽  
...  
Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. E205-E214 ◽  
Author(s):  
Minsu Cha ◽  
Gye-Chun Cho ◽  
J. Carlos Santamarina

Field data suggest that stress level and joint condition affect shear-wave propagation in jointed rock masses. However, the study of long-wavelength propagation in a jointed rock mass is challenging in the laboratory, and limited data are available under controlled test conditions. Long-wavelength P-wave and S-wave propagation normal to joints, using an axially loaded jointed column device, reproduces a range of joint conditions. The effects of the normal stress, loading history, joint spacing, matched surface topography (i.e., joint roughness), joint cementation (e.g., after grouting), joint opening, and plasticity of the joint filling on the P-wave and S-wave velocities and on S-wave attenuation are notable. The ratio [Formula: see text] in jointed rock masses differs from that found in homogeneous continua. The concept of Poisson’s ratio as a function of [Formula: see text] is unwarranted, and [Formula: see text] can be interpreted in terms of jointed characteristics. Analytic models that consider stress-dependent stiffness and frictional loss in joints as well as stress-independent properties of intact rocks can model experimental observations properly and extract joint properties from rock-mass test data. Thus, joint properties and normal stress have a prevalent role in propagation velocity and attenuation in jointed rock masses.


2021 ◽  
Author(s):  
Christoph Rettinger ◽  
Sebastian Eibl ◽  
Ulrich Rüde ◽  
Bernhard Vowinckel

<p>With the increasing computational power of today's supercomputers, geometrically fully resolved simulations of particle-laden flows are becoming a viable alternative to laboratory experiments. Such simulations enable detailed investigations of transport phenomena in various multiphysics scenarios, such as the coupled interaction of sediment beds with a shearing fluid flow. There, the majority of available simulations as well as experimental studies focuses on setups of monodisperse particles. In reality, however, polydisperse configurations are much more common and feature unique effects like vertical size segregation.</p><p>In this talk, we will present numerical studies of mobile polydisperse sediment beds in a laminar shear flow, with a ratio of maximum to minimum diameter up to 10. The lattice Boltzmann method is applied to represent the fluid dynamics through and above the sediment bed efficiently. We model particle interactions by a discrete element method and explicitly account for lubrication forces. The fluid-particle coupling mechanism is based on the geometrically fully resolved momentum transfer between the fluid and the particulate phase. We will highlight algorithmic aspects and communication schemes essential for massively parallel execution.</p><p>Utilizing these capabilities allows us to achieve large-scale simulations with more than 26.000 densely-packed polydisperse particles interacting with the fluid. With this, we are able to reproduce effects like size segregation and to study the rheological behavior of such systems in great detail. We will evaluate and discuss the influence of polydispersity on these processes. These insights will be used to improve and extend existing macroscopic models.</p>


2008 ◽  
Vol 43 (11-12) ◽  
pp. 2981-3002 ◽  
Author(s):  
Myhuong Nguyen ◽  
Martin Rhodes ◽  
Kurt Liffman ◽  
Ian McKinnon ◽  
Ron Beckett

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
H. Kruggel-Emden ◽  
S. Rickelt ◽  
S. Wirtz ◽  
V. Scherer

Based on the time-driven discrete element method, granular flow within a hopper is investigated. The main focus is thereby set on hopper vessel design variables such as discharge rates and applied wall pressures. Within the used model contacts are assumed as linear viscoelastic in normal and frictional-elastic in tangential direction. The hopper geometry is chosen according to Yang and Hsiau (2001, “The Simulation and Experimental Study of Granular Materials Discharged From a Silo With the Placement of Inserts,” Powder Technol., 120(3), pp. 244–255), who performed both experimental and numerical investigations. The considered setup is attractive because it involves only a small number of particles enabling fast modeling. However, the results on the experimental flow rates reported are contradictory and are afflicted with errors. By an analysis of the hopper fill levels at different points of time, the correct average discharge times and flow rates are obtained. Own simulation results are in good agreement with the experimental flow rates and discharge times determined. Based on the thereby defined set of simulation parameters, a sensitivity analysis of parameters such as friction coefficients, stiffnesses, and time steps is performed. As flow properties, besides the overall discharge times, the discharge time averaged axial and radial velocity distributions within the hopper and the normal stresses on the side walls during the first seconds of discharge are considered. The results show a strong connection of the friction coefficients with the discharge times, the velocity distributions, and the stresses on the side walls. Other parameters only reveal a weak often indifferent influence on the studied flow properties.


Sign in / Sign up

Export Citation Format

Share Document