scholarly journals A massless boundary component mode synthesis method for elastodynamic contact problems

2022 ◽  
Vol 260 ◽  
pp. 106698
Author(s):  
C.D. Monjaraz Tec ◽  
J. Gross ◽  
M. Krack
2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Tomoya Sakaguchi ◽  
Kazuyoshi Harada

In order to investigate cage stress in tapered roller bearings, a dynamic analysis tool considering both the six degrees of freedom of motion of the rollers and cage and the elastic deformation of the cage was developed. Cage elastic deformation is equipped using a component-mode-synthesis (CMS) method. Contact forces on the elastically deforming surfaces of the cage pocket are calculated at all node points of finite-elements on it. The location and pattern of the boundary points required for the component-mode-synthesis method were examined by comparing cage stresses in a static condition of pocket forces and constraints calculated by using the finite-element and the CMS methods. These results indicated that one boundary point lying at the center on each bar is appropriate for the effective dynamic analysis model focusing on the cage stress, especially at the pocket corners of the cages, which are actually broken. A behavior measurement of a polyamide cage in a tapered roller bearing was conducted for validating the analysis model. It was confirmed in both the experiment and analysis that the cage whirled under a large axial load condition and the cage center oscillated in a small amplitude under a small axial load condition. In the analysis, the authors discussed the four models including elastic bodies having a normal eigenmode of 0, 8 or 22, and rigid-body. There were small differences among the cage center loci of the four models. These two cages having normal eigenmodes of 0 and rigid-body whirled with imperceptible fluctuations. At least approximately 8 normal eigenmodes of cages should be introduced to conduct a more accurate dynamic analysis although the effect of the number of normal eigenmodes on the stresses at the pocket corners was insignificant. From the above, it was concluded to be appropriate to introduce one boundary point lying at the center on each pocket bar of cages and approximately 8 normal eigenmodes to effectively introduce the cage elastic deformations into a dynamic analysis model.


Author(s):  
Riki Iwai ◽  
Nobuyuki Kobayashi

This paper establishes a new type component mode synthesis method for a flexible beam element based on the absolute nodal coordinate formulation. The deformation of the beam element is defined as the sum of the global shape function and the analytical clamped-clamped beam modes. This formulation leads to a constant and symmetric mass matrix as the conventional absolute nodal coordinate formulation, and makes it possible to reduce the system coordinates of the beam structure which undergoes large rotations and large deformations. Numerical examples show that the excellent agreements are examined between the presented formulation and the conventional absolute nodal coordinate formulation. These results demonstrate that the presented formulation has high accuracy in the sense that the presented solutions are similar to the conventional ones with the less system coordinates and high efficiency in computation.


Sign in / Sign up

Export Citation Format

Share Document