scholarly journals Spatial variability of concrete electrical resistivity and corrosion rate in laboratory conditions

2021 ◽  
Vol 306 ◽  
pp. 124777
Author(s):  
Filipe Pedrosa ◽  
Carmen Andrade
2021 ◽  
Vol 72 (1) ◽  
pp. 1-17
Author(s):  
Mihai Iordoc ◽  
Georgiana Marin ◽  
Georgeta Stoianovici ◽  
Paula Prioteasa ◽  
Cristinel Balan ◽  
...  

Studies of the corrosion initiation at the pressure hydraulic test of pressure vessels during their filling, maintaining and draining are presented. It has been established that the most suitable method involves the use of corrosion inhibitors, which directly decrease the corrosion rate even in small or very small quantities. It was studied the influence of some corrosion inhibitors at different concentrations on some steel materials commonly used at pressure vessels manufacturing. The study involved the inhibitors testing both in laboratory and in factory conditions. Testing in laboratory conditions involved the analysis of the following inhibitors: urea, thiourea, triethanolamine, FINEAMIN 88 and FINEAMIN 06. The results were compared with those of the Adirol inhibitor, the currently used inhibitor. It was investigated the corrosion of the following stainless steels and unalloyed steels: A 240 grade 304, A 240 grade 316, A 516 grade 70, A 516 grade 60, P260-GH, P265, P275, P295-GH, P295, and P355. By recording the potentiodynamic polarization curves, the corrosion parameters (corrosion potential, corrosion current density, polarization resistance, corrosion rate, charge transfer coefficients for anodic and cathodic processes, inhibitors acting coefficients, and inhibition efficiencies) have been evaluated. The following corrosion inhibitor solutions were selected for testing under the factory specific conditions: Instal Protect SP at concentrations of 5%, 7.5% and 10%, ELG INCOR SP at 10% concentration, FINEAMIN 06 at 10/00 concentration and a mixture of 40mL FINEAMIN 06 + 40 mL FINEAMIN 88 SCAV25 in 40 L water. The analysed steels were A 106 grade B and A 283 grade C. Tests in laboratory conditions revealed a different behaviour of the inhibitors, depending on the analysed concentration and steel grade. The inhibitors proven as appropriate following the tests in the factory conditions were ELG INCOR SP used in industrial water (tap water), whereas the mixture of FINEAMIN 06 + FINEAMIN 88 SCAV25 had efficiency only in demineralised water.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5135
Author(s):  
Manuel Valcuende ◽  
Rafael Calabuig ◽  
Ana Martínez-Ibernón ◽  
Juan Soto

The main objective of this study was to analyze the influence that the addition of finely ground hydrated lime has on chloride-induced reinforcement corrosion in eco-efficient concrete made with 50% cement replacement by fly ash. Six tests were carried out: mercury intrusion porosimetry, chloride migration, accelerated chloride penetration, electrical resistivity, and corrosion rate. The results show that the addition of 10–20% of lime to fly ash concrete did not affect its resistance to chloride penetration. However, the cementitious matrix density is increased by the pozzolanic reaction between the fly ash and added lime. As a result, the porosity and the electrical resistivity improved (of the order of 10% and 40%, respectively), giving rise to a lower corrosion rate (iCORR) of the rebars and, therefore, an increase in durability. In fact, after subjecting specimens to wetting–drying cycles in a 0.5 M sodium chloride solution for 630 days, corrosion is considered negligible in fly ash concrete with 10% or 20% lime (iCORR less than 0.2 µA/cm2), while in fly ash concrete without lime, corrosion was low (iCORR of the order of 0.3 µA/cm2) and in the reference concrete made with Portland cement, only the corrosion was high (iCORR between 2 and 3 µA/cm2).


2019 ◽  
Vol 8 (2) ◽  
pp. 110-117 ◽  
Author(s):  
Gamal S. Swileam ◽  
Reda R. Shahin ◽  
Hamdy M. Nasr ◽  
Khalid S. Essa

2019 ◽  
Vol 9 (4) ◽  
pp. 617 ◽  
Author(s):  
S. Arredondo-Rea ◽  
R. Corral-Higuera ◽  
J. Gómez-Soberón ◽  
D. Gámez-García ◽  
J. Bernal-Camacho ◽  
...  

Recycled concrete aggregate (RA) from pavement demolition was used to make concrete. Ten concrete mixtures with different replacement percentages of RA (coarse and fine) were made. The corrosion rate of steel and the electrical resistivity of concrete were determined on reinforced concrete specimens subjected to wetting-drying cycles (3.5% solution of NaCl). Corrosion rate was determined using the electrochemical technique of linear polarization resistance, while the electrical resistivity was measured by electrochemical impedance spectroscopy. The results show that the use of RA introduces more interfaces in concrete, which accelerates the steel corrosion process because the porosity increases and the electrical resistivity decreases. However, steel corrosion and the electrical resistivity in concrete are not significantly influenced by replacing a maximum 30% of coarse aggregate or 20% of fine aggregate with RA.


2013 ◽  
Vol 27 (2) ◽  
pp. 211-218 ◽  
Author(s):  
R. Rossi ◽  
M. Amato ◽  
G. Bitella ◽  
R. Bochicchio

Abstract Appropriate management of soil spatial variability is an important tool for optimizing farming inputs, with the result of yield increase and reduction of the environmental impact in field crops. Under greenhouses, several factors such as non-uniform irrigation and localized soil compaction can severely affect yield and quality. Additionally, if soil spatial variability is not taken into account, yield deficiencies are often compensated by extra-volumes of crop inputs; as a result, over-irrigation and overfertilization in some parts of the field may occur. Technology for spatially sound management of greenhouse crops is therefore needed to increase yield and quality and to address sustainability. In this experiment, 2D-electrical resistivity tomography was used as an exploratory tool to characterize greenhouse soil variability and its relations to wild rocket yield. Soil resistivity well matched biomass variation (R2=0.70), and was linked to differences in soil bulk density (R2=0.90), and clay content (R2=0.77). Electrical resistivity tomography shows a great potential in horticulture where there is a growing demand of sustainability coupled with the necessity of stabilizing yield and product quality.


Author(s):  
W. E. King

A side-entry type, helium-temperature specimen stage that has the capability of in-situ electrical-resistivity measurements has been designed and developed for use in the AEI-EM7 1200-kV electron microscope at Argonne National Laboratory. The electrical-resistivity measurements complement the high-voltage electron microscope (HVEM) to yield a unique opportunity to investigate defect production in metals by electron irradiation over a wide range of defect concentrations.A flow cryostat that uses helium gas as a coolant is employed to attain and maintain any specified temperature between 10 and 300 K. The helium gas coolant eliminates the vibrations that arise from boiling liquid helium and the temperature instabilities due to alternating heat-transfer mechanisms in the two-phase temperature regime (4.215 K). Figure 1 shows a schematic view of the liquid/gaseous helium transfer system. A liquid-gas mixture can be used for fast cooldown. The cold tip of the transfer tube is inserted coincident with the tilt axis of the specimen stage, and the end of the coolant flow tube is positioned without contact within the heat exchanger of the copper specimen block (Fig. 2).


Author(s):  
H. Kung ◽  
A.J. Griffin ◽  
Y.C. Lu ◽  
K.E. Sickafus ◽  
T.E. Mitchell ◽  
...  

Materials with compositionally modulated structures have gained much attention recently due to potential improvement in electrical, magnetic and mechanical properties. Specifically, Cu-Nb laminate systems have been extensively studied mainly due to the combination of high strength, and superior thermal and electrical conductivity that can be obtained and optimized for the different applications. The effect of layer thickness on the hardness, residual stress and electrical resistivity has been investigated. In general, increases in hardness and electrical resistivity have been observed with decreasing layer thickness. In addition, reduction in structural scale has caused the formation of a metastable structure which exhibits uniquely different properties. In this study, we report the formation of b.c.c. Cu in highly textured Cu/Nb nanolayers. A series of Cu/Nb nanolayered films, with alternating Cu and Nb layers, were prepared by dc magnetron sputtering onto Si {100} wafers. The nominal total thickness of each layered film was 1 μm. The layer thickness was varied between 1 nm and 500 nm with the volume fraction of the two phases kept constant at 50%. The deposition rates and film densities were determined through a combination of profilometry and ion beam analysis techniques. Cross-sectional transmission electron microscopy (XTEM) was used to examine the structure, phase and grain size distribution of the as-sputtered films. A JEOL 3000F high resolution TEM was used to characterize the microstructure.


Sign in / Sign up

Export Citation Format

Share Document