scholarly journals Impact of electrodialytic remediation of MSWI fly ash on hydration and mechanical properties of blends with Portland cement

2021 ◽  
Vol 309 ◽  
pp. 125193
Author(s):  
Benjamin A.R. Ebert ◽  
Mette R. Geiker ◽  
Wolfgang Kunther ◽  
Gunvor M. Kirkelund
2014 ◽  
Vol 660 ◽  
pp. 312-316
Author(s):  
Mochamad Solikin ◽  
Budi Setiawan

This paper reports an investigation on mechanical properties of high volume fly ash (HVFA) concrete produced using different types of mixing water i.e. tap water and saturated lime water. The mechanical properties of ordinary Portland cement concrete are also investigated as control tests. The concrete were tested for their compressive strength, flexural strength and splitting tensile strength at the curing ages of 56 days. The results showed that strength development of high volume fly ash concrete up to 56 days is lower than ordinary portal cement. In addition, the flexural strength and splitting strength of concrete are lower than ordinary Portland cement. Moreover, the use of saturated lime water as mixing water reduces the mechanical properties of class C high volume fly ash concrete.


2017 ◽  
Vol 866 ◽  
pp. 195-198
Author(s):  
Rakchanok Promudom ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The physical and mechanical properties of Portland cement (PC) - natural rubber latex (NRL) - fly ash (FA) composites have been investigated. The latex per cement ratios that use in this experiment are 0, 5, 7.5 and 10% by weight of cement. Portland cement (PC) was partially replaced with fly ash 0-40% by weight of binder. Water to cement ratio were used in range of 0.305-0.385 (by weight not include water in latex). Nonionic surfactant was added in cement before mixed with natural rubber latex. In addition, to provide latex from natural rubber latex, the ammonia solution is added into natural rubber. The specimens were packing into an iron mold which sample size of 4x4x16 cm3. Moreover, the PC-NRL-FA composites were cured in water for 7 and 28 days at room temperature before measurement. Then, mechanical properties (flexural strength) and microstructure were studied.


2018 ◽  
Vol 12 (1) ◽  
pp. 167-186 ◽  
Author(s):  
M. Kheradmand ◽  
Z. Abdollahnejad ◽  
F. Pacheco-Torgal

Background:Geopolymeric binders are especially indicated when reusing a wide diversity of wastes. This is an important feature, especially in the European context, in which a circular economy and future zero waste are targeted. Still, the cost of these materials, due to the use of high purity activators, prevents their commercialization as they are simply not competitive enough.Objective:The reduction in the amount of activators could be a cost-efficient solution if the associated decrease in the mechanical properties turned not to be excessive. This means that it is important to investigate the manner in which these additives can be used on their composition in order to compensate that mechanical reduction.Results and Conclusion:This paper discloses results concerning the mixed design of fly ash based geopolymeric mixtures using metakaolin, Portland cement (OPC) and calcium hydroxide as additives. Their influence on the mechanical properties, microstructure and cost-efficiency was studied. The results showed that the use of Portland cement as an additive leads to lower compressive strength. Results also show that geopolymers with different additives have different optimum Na2SiO3/NaOH ratios.


2022 ◽  
Vol 1048 ◽  
pp. 376-386
Author(s):  
M.S. Riyana ◽  
Dhanya Sathyan ◽  
M.K. Haridharan

SCC (Self compacting concrete) can fill formwork and encloses reinforcing bars under gravity and maintains homogeneity without vibration. SCC shortens the period of construction, guarantees compaction in confined zones, moreover terminates noise due to vibration. The wide spread application of SCC is restricted because of the high cost for the production of SCC with high cement content and chemical admixtures. In order to make the production of SCC economical, and to reduce the high cement content the Ordinary Portland Cement in SCC can be blended with pozzolanic materials like rice husk ash and supplementary cementitious materials like fly ash. In this paper the fresh state properties and mechanical properties such as compressive strength, split tensile strength and flexural strength of SCC with ternary blends of rice husk ash (RHA) and fly ash (FA) were studied. For this purpose, different mixes were prepared by replacing Ordinary Portland Cement (OPC) with 5%, 10%, 15% and 20% of rice husk ash (RHA) and the percentage of addition of fly ash (FA) is fixed as 15% for all these mixes. It was observed that the specimen incorporating 10% of rice husk ash (RHA) and 15% of fly ash (FA) as ternary blend exhibits better mechanical properties such as: Compressive, split tensile and flexural strengths at 28 days of age as compared to traditional mix of SCC without RHA (Rice Husk Ash) and FA (Fly Ash). This research demonstrates that the ideal percentage for a mixture of rice husk ash (RHA) and fly ash as ternary blend is 10% and 15% respectively.


2011 ◽  
Vol 194-196 ◽  
pp. 1026-1029
Author(s):  
Bao Jia Li ◽  
Guo Zhong Li

The composite cementitious material was prepared with soda residue and fly ash. The mechanical properties were improved by mixing calcined lime and Portland cement, and the mechanism of admixture was researched. The results showed that the 28d flexural strength reached 3.59MPa and the 28d compressive strength reached 9.71MPa., when the proportion of soda residue and fly ash was 40:60 with 9% Portland cement and 7% calcined lime added.


2015 ◽  
Vol 1106 ◽  
pp. 37-40 ◽  
Author(s):  
Karel Šeps ◽  
Iva Broukalová

The paper refers to previous research in the field recycling and reuse of secondary raw materials. It deals with utilization of micro-grounded recycled material and fly-ash as a partial substitution of Portland cement in cementitious composites. Six sets of test specimens with varying recipe were prepared for testing of mechanical properties. Flexural strength was tested on specimens 40x40x160 mm and then compression strength was measured on fragments from flexural tests. Results of tests are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document