Preparation of geopolymer based on lunar regolith simulant at in-situ lunar temperature and its durability under lunar high and cryogenic temperature

2022 ◽  
Vol 318 ◽  
pp. 126033
Author(s):  
Rongrong Zhang ◽  
Siqi Zhou ◽  
Feng Li
Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4128
Author(s):  
Xin Li Phuah ◽  
Han Wang ◽  
Bruce Zhang ◽  
Jaehun Cho ◽  
Xinghang Zhang ◽  
...  

In situ utilization of available resources in space is necessary for future space habitation. However, direct sintering of the lunar regolith on the Moon as structural and functional components is considered to be challenging due to the sintering conditions. To address this issue, we demonstrate the use of electric current-assisted sintering (ECAS) as a single-step method of compacting and densifying lunar regolith simulant JSC-1A. The sintering temperature and pressure required to achieve a relative density of 97% and microhardness of 6 GPa are 700 °C and 50 MPa, which are significantly lower than for the conventional sintering technique. The sintered samples also demonstrated ferroelectric and ferromagnetic behavior at room temperature. This study presents the feasibility of using ECAS to sinter lunar regolith for future space resource utilization and habitation.


2022 ◽  
pp. 105414
Author(s):  
Michail Samouhos ◽  
Petros Tsakiridis ◽  
Magued Iskander ◽  
Maria Taxiarchou ◽  
Konstantinos Betsis

Author(s):  
Athanasios Goulas ◽  
Jon GP Binner ◽  
Daniel S Engstrøm ◽  
Russell A Harris ◽  
Ross J Friel

Additive manufacturing and its related techniques have frequently been put forward as a promising candidate for planetary in-situ manufacturing, from building life-sustaining habitats on the Moon to fabricating various replacements parts, aiming to support future extra-terrestrial human activity. This paper investigates the mechanical behaviour of lunar regolith simulant material components, which is a potential future space engineering material, manufactured by a laser-based powder bed fusion additive manufacturing system. The influence of laser energy input during processing was associated with the evolution of component porosity, measured via optical and scanning electron microscopy in combination with gas expansion pycnometry. The compressive strength performance and Vickers micro-hardness of the components were analysed and related back to the processing history and resultant microstructure of the lunar regolith simulant build material. Fabricated structures exhibited a relative porosity of 44–49% and densities ranging from 1.76 to 2.3 g cm−3, with a maximum compressive strength of 4.2 ± 0.1 MPa and elastic modulus of 287.3 ± 6.6 MPa, the former is comparable to a typical masonry clay brick (3.5 MPa). The additive manufacturing parts also had an average hardness value of 657 ± 14 HV0.05/15, better than borosilicate glass (580 HV). This study has shed significant insight into realising the potential of a laser-based powder bed fusion additive manufacturing process to deliver functional engineering assets via in-situ and abundant material sources that can be potentially used for future engineering applications in aerospace and astronautics.


2021 ◽  
Vol 33 (3) ◽  
pp. 037117
Author(s):  
Garrett L. Schieber ◽  
Brant M. Jones ◽  
Thomas M. Orlando ◽  
Peter G. Loutzenhiser

2018 ◽  
Author(s):  
Chao Wang ◽  
Xiaochen Lu ◽  
Rong Ma ◽  
Wei Yao

2021 ◽  
Vol 27 (S1) ◽  
pp. 386-387
Author(s):  
Martial Duchamp ◽  
Joseph Vas ◽  
Reinis Ignatans ◽  
Aaron David Mueller ◽  
Rohit Medwal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document