Basic tensile creep of concrete with and without superabsorbent polymers at early ages

2022 ◽  
Vol 320 ◽  
pp. 126180
Author(s):  
Liang Li ◽  
Arosha G.P. Dabarera ◽  
Vinh Dao
Author(s):  
S. M. L. Sastry

Ti3Al is an ordered intermetallic compound having the DO19-type superlattice structure. The compound exhibits very limited ductility in tension below 700°C because of a pronounced planarity of slip and the absence of a sufficient number of independent slip systems. Significant differences in slip behavior in the compound as a result of differences in strain rate and mode of deformation are reported here.Figure 1 is a comparison of dislocation substructures in polycrystalline Ti3Al specimens deformed in tension, creep, and fatigue. Slip activity on both the basal and prism planes is observed for each mode of deformation. The dominant slip vector in unidirectional deformation is the a-type (b) = <1120>) (Fig. la). The dislocations are straight, occur for the most part in a screw orientation, and are arranged in planar bands. In contrast, the dislocation distribution in specimens crept at 700°C (Fig. lb) is characterized by a much reduced planarity of slip, a tangled dislocation arrangement instead of planar bands, and an increased incidence of nonbasal slip vectors.


Author(s):  
B. J. Hockey ◽  
S. M. Wiederhorn

ATEM has been used to characterize three different silicon nitride materials after tensile creep in air at 1200 to 1400° C. In Part I, the microstructures and microstructural changes that occur during testing were described, and consistent with that description the designations and sintering aids for these materials were: W/YAS, a SiC whisker reinforced Si3N4 processed with yttria (6w/o) and alumina (1.5w/o); YAS, Si3N4 processed with yttria (6 w/o) and alumina (1.5w/o); and YS, Si3N4 processed with yttria (4.0 w/o). This paper, Part II, addresses the interfacial cavitation processes that occur in these materials and which are ultimately responsible for creep rupture.


2020 ◽  
Author(s):  
C. Kale ◽  
S. Srinivasan ◽  
B.C. Hornbuckle ◽  
R.K. Koju ◽  
K. Darling ◽  
...  

Polymers ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 605 ◽  
Author(s):  
Jungmin Lee ◽  
Soohee Park ◽  
Hyun-gyoo Roh ◽  
Seungtaek Oh ◽  
Sunghoon Kim ◽  
...  

2021 ◽  
pp. 1-8
Author(s):  
Alexandra Pine ◽  
Cheng Chi Wu ◽  
Srivatsan Raghavan ◽  
Brian Love

2020 ◽  
Vol 39 (1) ◽  
pp. 136-145 ◽  
Author(s):  
Sojiro Uemura ◽  
Shiho Yamamoto Kamata ◽  
Kyosuke Yoshimi ◽  
Sadahiro Tsurekawa

AbstractMicrostructural evolution in the TiC-reinforced Mo–Si–B-based alloy during tensile creep deformation at 1,500°C and 137 MPa was investigated via scanning electron microscope-backscattered electron diffraction (SEM-EBSD) observations. The creep curve of this alloy displayed no clear steady state but was dominated by the tertiary creep regime. The grain size of the Moss phase increased in the primary creep regime. However, the grain size of the Moss phase was found to remarkably decrease to <10 µm with increasing creep strain in the tertiary creep regime. The EBSD observations revealed that the refinement of the Moss phase occurred by continuous dynamic recrystallization including the transformation of low-angle grain boundaries to high-angle grain boundaries. Accordingly, the deformation of this alloy is most likely to be governed by the grain boundary sliding and the rearrangement of Moss grains such as superplasticity in the tertiary creep regime. In addition, the refinement of the Moss grains surrounding large plate-like T2 grains caused the rotation of their surfaces parallel to the loading axis and consequently the cavitation preferentially occurred at the interphases between the end of the rotated T2 grains and the Moss grains.


2021 ◽  
pp. 073168442110204
Author(s):  
Bin Yang ◽  
Yingying Shang ◽  
Zeliang Yu ◽  
Minger Wu ◽  
Youji Tao ◽  
...  

In recent years, coated fabrics have become the major material used in membrane structures. Due to the special structure of base layer and mechanical properties, coated biaxial warp-knitted fabrics are increasingly applied in pneumatic structures. In this article, the mechanical properties of coated biaxial warp-knitted fabrics are investigated comprehensively. First, off-axial tensile tests are carried out in seven in-plane directions: 0°, 15°, 30°, 45°, 60°, 75°, and 90°. Based on the stress–strain relationship, tensile strengths are obtained and failure modes are studied. The adaptability of Tsai–Hill criterion is analyzed. Then, the uniaxial tensile creep test is performed under 24-h sustained load and the creep elongation is calculated. Besides, tearing strengths in warp and weft directions are obtained by tearing tests. Finally, the biaxial tensile tests under five different load ratios of 1:1, 2:1, 1:2, 1:0, and 0:1 are carried out, and the elastic constants and Poisson’s ratio are calculated using the least squares method based on linear orthotropic assumption. Moreover, biaxial specimens under four load ratios of 3:1, 1:3, 5:1, and 1:5 are further tensile tested to verify the adaptability of linear orthotropic model. These experimental data offer a deeper and comprehensive understanding of mechanical properties of coated biaxial warp-knitted fabrics and could be conveniently adopted in structural design.


2021 ◽  
Vol 11 (2) ◽  
pp. 700
Author(s):  
Irene A. Kanellopoulou ◽  
Ioannis A. Kartsonakis ◽  
Costas A. Charitidis

Cementitious structures have prevailed worldwide and are expected to exhibit further growth in the future. Nevertheless, cement cracking is an issue that needs to be addressed in order to enhance structure durability and sustainability especially when exposed to aggressive environments. The purpose of this work was to examine the impact of the Superabsorbent Polymers (SAPs) incorporation into cementitious composite materials (mortars) with respect to their structure (hybrid structure consisting of organic core—inorganic shell) and evaluate the microstructure and self-healing properties of the obtained mortars. The applied SAPs were tailored to maintain their functionality in the cementitious environment. Control and mortar/SAPs specimens with two different SAPs concentrations (1 and 2% bwoc) were molded and their mechanical properties were determined according to EN 196-1, while their microstructure and self-healing behavior were evaluated via microCT. Compressive strength, a key property for mortars, which often degrades with SAPs incorporation, in this work, practically remained intact for all specimens. This is coherent with the porosity reduction and the narrower range of pore size distribution for the mortar/SAPs specimens as determined via microCT. Moreover, the self-healing behavior of mortar-SAPs specimens was enhanced up to 60% compared to control specimens. Conclusively, the overall SAPs functionality in cementitious-based materials was optimized.


Sign in / Sign up

Export Citation Format

Share Document