Mix design of concrete: Advanced particle packing model by developing and combining multiple frameworks

2022 ◽  
Vol 320 ◽  
pp. 126218
Author(s):  
Rawaz Kurda ◽  
Ahmed Salih ◽  
Pshtiwan Shakor ◽  
Peshkawt Saleh ◽  
Rayed Alyousef ◽  
...  
Author(s):  
Wujian Long ◽  
Bo Zhou ◽  
Peijian Liang ◽  
Roujia Sun

2011 ◽  
Vol 57 (4) ◽  
pp. 357-371 ◽  
Author(s):  
S. Gopinath ◽  
A. Ramachandra Murthy ◽  
D. Ramya ◽  
Nagesh R. Iyer

Abstract This paper presents the details of optimized mix design for normal strength and high performance concrete using particle packing method. A critical review of mix design methods have been carried out for normal strength concrete using American Concrete Institute (ACI) and Bureau of Indian Standards (BIS) methods highlighting the similarities and differences towards attaining a particular design compressive strength. Mix design for M30 and M40 grades of concrete have been carried out using ACI, BIS and particle packing methods. Optimization of concrete mix has been carried out by means of particle packing method using EMMA software, which employs modified Anderson curve to adjust the main proportions. Compressive strength is evaluated for the adjusted proportions and it is observed that the mixes designed by particle packing method estimates compressive strength closer to design compressive strength. Further, particle packing method has been employed to optimize the ingredients of high performance concrete and experiments have been carried out to check the design adequacy of the desired concrete compressive strength.


2000 ◽  
Vol 8 (2) ◽  
pp. 159-168 ◽  
Author(s):  
Jong Cheol Kim ◽  
Keun Ho Auh ◽  
David M Martin

2019 ◽  
Vol 44 (60) ◽  
pp. 32170-32183 ◽  
Author(s):  
Magnus So ◽  
Kayoung Park ◽  
Tomohiro Ohnishi ◽  
Masumi Ono ◽  
Yoshifumi Tsuge ◽  
...  

2020 ◽  
Vol 25 (4) ◽  
Author(s):  
Aline Hermann ◽  
Géssica Katalyne Bilcati ◽  
Isabela Ames ◽  
Ana Gabriella Chekalski da Silva ◽  
Daniel Dal Agnol Grossman ◽  
...  

RESUMO O “arranjo seco” de um composto cimentício pode ser definido como a relação mássica ou volumétrica entre os materiais secos que o constitui. Por meio da fixação da espécie de material componente deste arranjo e do processo de produção do composto cimentício, é possível analisar de forma mais clara o processo de dosagem de um composto cimentício qualquer. Para analisar o comportamento destes compostos pelas mudanças nas quantidades volumétricas dos seus componentes, tem-se os modelos básicos de empacotamento de partículas, como é o caso do Modelo de Empacotamento de Funk e Dinger. O presente artigo tem como finalidade analisar as propriedades no estado fresco (índice de consistência) e endurecido (absorção de água, massa específica e resistência à compressão axial) das argamassas produzidas a partir do modelo de empacotamento de partículas de Funk e Dinger. Neste modelo, as partículas de cimento foram consideradas como parte do “arranjo seco” (agregados), transformando em “matriz” (ou agente de separação) somente o volume de água, facilitando desta forma a definição do consumo de cimento. Os resultados demonstraram que é possível alcançar, pela alteração da quantidade volumétrica dos componentes, uma redução do consumo de cimento de aproximadamente 32% e ao mesmo tempo alcançar um aumento da resistência à compressão axial de aproximadamente 59%, juntamente com a redução da absorção e o aumento da massa especifica dos corpos de prova. Contudo, foi verificado um decréscimo significativo na trabalhabilidade das argamassas produzidas.


2021 ◽  
Author(s):  
Jinsu Nam ◽  
Jaehee Lyu ◽  
Junyoung Park

Abstract There are computation time constraints caused by the number and size of particles in the powder packing simulation using DEM. In this paper, newly suggested packing model transforms a general packing sequence –particle generation, stack, and compression – into particle generation and packing by growing particles. To verify the new packing model, it was compared using three contact models widely used in DEM, in terms of Radial Distribution Function, porosity, and Coordination Number. As a result, contact between particles showed a similar trend, and the pore distribution was also similar. Using the new packing model can reduce simulation time by 400% compared to the normal packing model without any other coarse graining methods. This model has only been applied to particle packing simulations in this paper, but it can be expanded to other simulations with complex domain based on DEM.


Sign in / Sign up

Export Citation Format

Share Document