Rheological properties of asphalt binder modified by nano-TiO2/ZnO and basalt fiber

2022 ◽  
Vol 320 ◽  
pp. 126323
Author(s):  
Zhen Fu ◽  
Yujie Tang ◽  
Feng Ma ◽  
Yujie Wang ◽  
Ke Shi ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Liming Zhang ◽  
Xuekai Gao ◽  
Wensheng Wang ◽  
Hua Wang ◽  
Kunkun Zheng

Nanomaterials have a great potential for enhancing the performance of base asphalt binder. This study aims to promote the application of nano-TiO2/CaCO3 in bitumen and presents a study on rheological properties for TiO2/CaCO3 nanoparticle-bitumen. In this study, a series of laboratory experiments have been performed for bitumen with different nano-TiO2/CaCO3 dosages. Nano-TiO2/CaCO3-modified bitumen with optimum dosage was prepared for viscosity, dynamic shear rheometer (DSR), and beam bending rheometer (BBR) for assessing temperature sensitivity of bitumen, and the low-medium-high-temperature performances were analyzed for TiO2/CaCO3 nanoparticle-bitumen as well. Results show that bituminous mechanical properties were enhanced by TiO2/CaCO3, and based on the overall desirability analysis of various conventional tests, the reasonable dosage of nano-TiO2/CaCO3 was recommended as 5% by weight of base bitumen. Adding nano-TiO2/CaCO3 was beneficial to improve the viscosity and reduce the temperature sensitivity of bitumen. The capacities of bituminous rutting resistance as well as medium-temperature fatigue resistance were enhanced by the addition of nano-TiO2/CaCO3. However, BBR test shows that bituminous anticracking is reduced slightly. On this basis, the Burgers model is selected for clarifying the decrease in anticracking performance; that is, nano-TiO2/CaCO3 increased the stiffness modulus while increasing the viscosity of bitumen.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2152
Author(s):  
Iran Rocha Segundo ◽  
Salmon Landi ◽  
Alexandros Margaritis ◽  
Georgios Pipintakos ◽  
Elisabete Freitas ◽  
...  

Transparent binder is used to substitute conventional black asphalt binder and to provide light-colored pavements, whereas nano-TiO2 has the potential to promote photocatalytic and self-cleaning properties. Together, these materials provide multifunction effects and benefits when the pavement is submitted to high solar irradiation. This paper analyzes the physicochemical and rheological properties of a transparent binder modified with 0.5%, 3.0%, 6.0%, and 10.0% nano-TiO2 and compares it to the transparent base binder and conventional and polymer modified binders (PMB) without nano-TiO2. Their penetration, softening point, dynamic viscosity, master curve, black diagram, Linear Amplitude Sweep (LAS), Multiple Stress Creep Recovery (MSCR), and Fourier Transform Infrared Spectroscopy (FTIR) were obtained. The transparent binders (base and modified) seem to be workable considering their viscosity, and exhibited values between the conventional binder and PMB with respect to rutting resistance, penetration, and softening point. They showed similar behavior to the PMB, demonstrating signs of polymer modification. The addition of TiO2 seemed to reduce fatigue life, except for the 0.5% content. Nevertheless, its addition in high contents increased the rutting resistance. The TiO2 modification seems to have little effect on the chemical functional indices. The best percentage of TiO2 was 0.5%, with respect to fatigue, and 10.0% with respect to permanent deformation.


Author(s):  
Iran Rocha Segundo ◽  
Salmon Landi Jr. ◽  
Alexandros Margaritis ◽  
Georgios Pipintakos ◽  
Elisabete Freitas ◽  
...  

Transparent binder is used to substitute conventional black asphalt binder and to provide light-colored pavements, whereas nano-TiO2 has the potential to promote photocatalytic and self-cleaning properties. Together, these materials provide multifunction effects and benefits when the pavement is submitted to high solar irradiation. This paper analyses the physicochemical and rheological properties of a transparent binder modified with 0.5%, 3.0%, 6.0%, and 10.0% of nano-TiO2 and compares it to the transparent base binder, and conventional and polymer modified binders (PMB) without nano-TiO2. Their penetration, softening point, dynamic viscosity, master curve, black diagram, Linear Amplitude Sweep (LAS), Multiple Stress Creep Recovery (MSCR), and Fourier-Transform Infrared Spectroscopy (FTIR) were obtained. The transparent binders (base and modified) seem to be workable considering their viscosity and exhibited values between the conventional binder and PMB regarding rutting resistance, penetration, and softening point. They showed similar behavior as the PMB, demonstrating signs of polymer-modification. The addition of TiO2 seems to reduce fatigue life, except for the 0.5% content. Nevertheless, its addition in high contents increases the rutting resistance. The TiO2 modification seems to have little effect on the chemical functional indices. The best percentage of TiO2 was 0.5%, considering fatigue and 10.0% concerning permanent deformation.


2013 ◽  
Vol 25 (3) ◽  
pp. 355-364 ◽  
Author(s):  
Dong Wang ◽  
Linbing Wang ◽  
Xinyu Gu ◽  
Guoqing Zhou

2015 ◽  
Vol 27 (3) ◽  
pp. 04014135 ◽  
Author(s):  
Ali Jamshidi ◽  
Meor Othman Hamzah ◽  
Zulkurnain Shahadan ◽  
Ahmad Shukri Yahaya

Sign in / Sign up

Export Citation Format

Share Document