CRUSOE: A Toolset for Cyber Situational Awareness and Decision Support in Incident Handling

2022 ◽  
pp. 102609
Author(s):  
Martin Husák ◽  
Lukáš Sadlek ◽  
Stanislav Špaček ◽  
Martin Laštovička ◽  
Michal Javorník ◽  
...  
AI Magazine ◽  
2019 ◽  
Vol 40 (3) ◽  
pp. 41-57
Author(s):  
Manisha Mishra ◽  
Pujitha Mannaru ◽  
David Sidoti ◽  
Adam Bienkowski ◽  
Lingyi Zhang ◽  
...  

A synergy between AI and the Internet of Things (IoT) will significantly improve sense-making, situational awareness, proactivity, and collaboration. However, the key challenge is to identify the underlying context within which humans interact with smart machines. Knowledge of the context facilitates proactive allocation among members of a human–smart machine (agent) collective that balances auto­nomy with human interaction, without displacing humans from their supervisory role of ensuring that the system goals are achievable. In this article, we address four research questions as a means of advancing toward proactive autonomy: how to represent the interdependencies among the key elements of a hybrid team; how to rapidly identify and characterize critical contextual elements that require adaptation over time; how to allocate system tasks among machines and agents for superior performance; and how to enhance the performance of machine counterparts to provide intelligent and proactive courses of action while considering the cognitive states of human operators. The answers to these four questions help us to illustrate the integration of AI and IoT applied to the maritime domain, where we define context as an evolving multidimensional feature space for heterogeneous search, routing, and resource allocation in uncertain environments via proactive decision support systems.


Author(s):  
Jassim Happa ◽  
Ioannis Agrafiotis ◽  
Martin Helmhout ◽  
Thomas Bashford-Rogers ◽  
Michael Goldsmith ◽  
...  

In recent years, many tools have been developed to understand attacks that make use of visualization, but few examples aims to predict real-world consequences. We have developed a visualization tool that aims to improve decision support during attacks. Our tool visualizes propagation of risks from IDS and AV-alert data by relating sensor alerts to Business Process (BP) tasks and machine assets: an important capability gap present in many Security Operation Centres (SOCs) today. In this paper we present a user study in which we evaluate the tool's usability and ability to deliver situational awareness to the analyst. Ten analysts from seven SOCs performed carefully designed tasks related to understanding risks and prioritising recovery decisions. The study was conducted in laboratory conditions, with simulated attacks, and used a mixed-method approach to collect data from questionnaires, eyetracking and voice-recorded interviews. The findings suggest that providing analysts with situational awareness relating to business priorities can help them prioritise response strategies. Finally, we provide an in-depth discussion on the wider questions related to user studies in similar conditions as well as lessons learned from our user study and developing a visualization tool of this type.


2017 ◽  
Vol 32 (S1) ◽  
pp. S229
Author(s):  
Irene Christodoulou ◽  
George M. Milis ◽  
Panayiotis Kolios ◽  
Christos Panayiotou ◽  
Marios Polycarpou ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Bonnie Gale ◽  
Lauren Charles ◽  
Hamid Mansoor ◽  
Chen-Yeou YU

ObjectiveThe Pocket Atlas of Infectious Diseases (PocketAID) mobile application developed at Pacific Northwest National Laboratory (PNNL) provides infectious disease education and decision support offline for an enhanced personal situational risk assessment anywhere in the world. The app integrates a user’s location, demographic information, and infectious disease data to present the user with important information including personalized, calculated risk level. PocketAID features a global disease distribution map and epidemiological curve of country-based case counts by year. Filter options allow users to customize disease lists available to aid in situational awareness. PocketAID, first of its kind, is being developed for offline decision support use by Department of Defense’s Defense Threat Reduction Agency (DTRA).IntroductionThere are a wide variety of available web-based apps, such as CDC’s Epidemic Information Exchange, that provide infectious disease information and disease distribution [1]. Publicly available, online data can be used to inform a user of general risks based on disease distribution maps and case count data. Unfortunately, each app contains different aspects of the data, which is often represented in different ways and incompatible formats. This heterogeneity can overwhelm a user with confusing information making it difficult to interpret or gain valuable insight into their own situational risk in a specified location. In addition, online resources do not filter information based on the user’s current location or situational needs and, therefore, reduces the value of information a user may be interpreting.However, information formatted and represented appropriately in a single app could be used to better understand an individual’s situational infectious disease risk. In addition, this information may further educate a user based on a situation or incident to prevent disease spread, especially in higher risk populations. To accomplish these goals, PNNL has developed an offline, Android app that provides the user with simple, easy to understand filterable global infectious disease information integrated with their location to provide personalized situational health risk and decision support in the field.MethodsThis prototype mobile app was a product of PNNL’s Biosurveillance Application Competition, sponsored by DTRA. Our implementation of this prototype consisted of two parallel efforts: data collection and Android app development.Data. Infectious disease information was collected from CDC, WHO, Biosurveillance Resource Directory, and Analytics for Investigation of Disease Outbreaks websites [1-4]. Visualization feature data for global disease distribution and the case count curves was collected from CDC, WHO, and ECDC websites [1, 2, 5]. Data used for the disease filter and risk level warning features were associated to the collected infectious disease information and user inputted demographic information.Application. The prototype app was built using Android operating system. Information about diseases, e.g., transmission mode, symptoms, properties, was stored in SQLite database that was imported into the phone at install time to provide offline information access. We used OSMDroid, an open source project, for map and location services. Downloaded map tiles made zoomable, interactive maps available offline.ResultsPocketAID biosurveillance Android app was targeted for active duty service members, although deemed useful to a much broader audience. Given the various challenges that service members can face during deployment, such as no connectivity in remote areas, the app provides full functionality offline. The general purpose of PocketAID is to provide a user with infectious disease situational awareness and decision support, not be used as an analytic tool to test, treat, or diagnose disease.Upon launch, the user is shown their location on a zoomable, interactive map and a list of diseases that are known to be present in their current country (detected automatically using the device’s GPS). The user can change their location by selecting a country from the location dropdown menu, filtering the populated list of diseases. The user can further filter diseases by disease attributes: symptoms, transmission, and properties. Clicking on a disease redirects the user to a page with more details about the disease, an interactive map of global disease distribution, and epidemiological curve displaying case counts by year for selected disease in selected country.The user can input basic demographic information (i.e., age, gender, occupation, and pregnancy status) in the settings page of the app, which then enables an automated assessment of disease risk. Since specific diseases pose an increased risk to certain groups of people, the app can personalize the user’s risk level. In other words, if a user’s demographic information matches a disease’s risk groups, the user is shown a warning alert.The app was awarded second prize in the competition by judges from across the government for its perceived benefit to biosurveillance, innovation and originality, quality of user experience, and long-term value and sustainability.ConclusionsThe PocketAID provides global disease distribution on a zoomable map, infectious disease background information, disease case counts, offline capabilities, and diseases filtered by the location. This educational app offers a situational health risk assessment for the user through accessing infectious disease information with a disease attribute filter, personalized risk level warning, and user’s GPS or selected location to help improve decision support and reduce situational risk. The app was vetted by domain experts across the US Government, who found it to be useful and valuable.References1. Centers for Disease Control and Prevention [Internet]. Atlanta (GA): U.S. Department of Health & Human Services; [cited 2018 Aug 17]. Available from: https://www.cdc.gov/.2. World Health Organization [Internet]. Geneva (Switzerland): World Health Organization; c2018 [cited 2018 Aug 17]. Available from: http://www.who.int/gho/en/.3. Margevicius KJ, Generous N, Taylor-McCabe KJ, et. al. Advancing a Framework to Enable Characterization and Evaluation of Data Streams Useful for Biosurveillance. PLOS ONE 2014;9(1): e83730. doi: 10.1371/journal.pone.00837304. Analytics for Investigation of Disease Outbreaks [Internet]. Los Alamos (NM): Los Alamos National Security, LLC for the U.S Dept. of Energy's NNSA; c2018 [cited 2018 Aug 17]. Available from: https://aido.bsvgateway.org/.5. Surveillance Atlas of Infectious Diseases [Internet]. Solna (Sweden): European Centre for Disease Prevention & Control; c2018 [cited 2018 Aug 17]. Available from: http://atlas.ecdc.europa.eu/public/index.aspx.


2006 ◽  
Vol 5 (1) ◽  
pp. 1-14 ◽  
Author(s):  
John Cushing ◽  
Lecha Dawn Janssen ◽  
Stephen Allen ◽  
Stephanie Guerlain

Information visualization techniques such as overview + detail displays have traditionally been applied and studied in domains with static data sets supporting information retrieval tasks. This study examines how these techniques can be extended to the design of interfaces for decision support systems (DSSs). Specifically, we developed a computerized decision support tool to assist Naval Tomahawk Strike Coordinators in the complex process of assigning a set of planned missions to a set of available launch platforms based on a number of different constraints and objectives, and compared user performance on two realistic scenarios (a within-subjects factor) across two versions of this tool (a between-subjects factor). The first version of the Mission-to-Platform Assignment Tool provided users with only a set of detail displays when assigning missions, whereas the second version had an additional, abstracted ‘overview’ display that allowed users to see the effect of early decisions on later decisions. The results showed that subjects performing this planning task with the overview + details display version completed scenarios, on average, 21% faster, with 22% fewer errors and with 74% fewer required workspace navigation activities than a comparable group using just the detail displays version. Subjects in the former group also rated their situational awareness 14% higher than those subjects without the overview display.


2019 ◽  
Vol 9 (21) ◽  
pp. 4577 ◽  
Author(s):  
Mariusz Chmielewski ◽  
Krzysztof Sapiejewski ◽  
Michał Sobolewski

This paper presents advances in the development of specialized mobile applications for combat decision support utilizing augmented reality technologies used for the production of contextual data delivered to any tactical smartphone. Handhelds and decision support systems have been present in military operations since the 1990s. Due to the development of hardware and software platforms, smartphones are capable of running complex algorithms for individual soldiers and low-level commander support. The utilization of tactical data (force location, composition, and tasks) in dynamic mobile networks that are accessible anywhere during a mission provides means for the development of situational awareness and decision superiority. These two elements are key factors in 21st-century military operations, as they influence the efficiency of recognition, identification, and targeting. Combat support tools and their analytical capabilities can serve as recon data hubs, but most of all they can support and simplify complex analytical tasks for commanders. These tasks mainly include topographical and tactical orientation within the battlespace. This paper documents the ideas for and construction details of mobile support tools used for supporting the specific operational activities of military personnel during combat and crisis management. The presented augmented reality-based evaluation methods formulate new capabilities for the visualization and identification of military threats, mission planning characteristics, tasks, and checkpoints, which help individuals to orientate within their current situation. The developed software platform, mobile common operational picture (mCOP), demonstrates all research findings and delivers a personalized combat-oriented distributed mobile system, supporting blue-force tracking capabilities and reconnaissance data fusion as well as threat-level evaluations for military and crisis management scenarios. The mission data are further fused with Geographic Information System (GIS) topographical and vector data, supporting terrain evaluations for mission planning and execution. The application implements algorithms for path finding, movement task scheduling, assistance, and analysis, as well as military potential evaluation, threat-level estimation, and location tracking. The features of the mCOP mobile application were designed and organized as mission-critical functions. The presented research demonstrates and proves the usefulness of deploying mobile applications for combat support, situation awareness development, and the delivery of augmented reality-based threat-level analytical data to extend the capabilities and properties of software tools applied for supporting military and border protection operations.


Author(s):  
Andreas Tolk

This chapter describes the use of simulation systems for decision support in support of real operations, which is the most challenging application domain in the discipline of modeling and simulation. To this end, the systems must be integrated as services into the operational infrastructure. To support discovery, selection, and composition of services, they need to be annotated regarding technical, syntactic, semantic, pragmatic, dynamic, and conceptual categories. The systems themselves must be complete and validated. The data must be obtainable, preferably via common protocols shared with the operational infrastructure. Agents and automated forces must produce situation adequate behavior. If these requirements for simulation systems and their annotations are fulfilled, decision support simulation can contribute significantly to the situational awareness up to cognitive levels of the decision maker.


Sign in / Sign up

Export Citation Format

Share Document