The application of cold atmospheric plasma in medicine: The potential role of nitric oxide in plasma-induced effects

2016 ◽  
Vol 4 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Christoph V. Suschek ◽  
Christian Opländer
2020 ◽  
Vol 22 (1) ◽  
pp. 72-79
Author(s):  
Alexandra Lee ◽  
◽  
Warwick Butt ◽  
◽  
◽  
...  

Inhaled nitric oxide has been used for 30 years to improve oxygenation and decrease pulmonary vascular resistance. In the past 15 years, there has been increased understanding of the role of endogenous nitric oxide on cell surface receptors, mitochondria, and intracellular processes involving calcium and superoxide radicals. This has led to several animal and human experiments revealing a potential role for administered nitric oxide or nitric oxide donors in patients with systemic inflammatory response syndrome or ischaemia–reperfusion injury, and in patients for whom exposure of blood to artificial surfaces has occurred.


2018 ◽  
Vol 20 (23) ◽  
pp. 5276-5284 ◽  
Author(s):  
Renwu Zhou ◽  
Rusen Zhou ◽  
Karthika Prasad ◽  
Zhi Fang ◽  
Robert Speight ◽  
...  

Here the possibility of plasma-activated water being a green disinfectant, whose bioactivity is closely linked to peroxynitrite generation, was demonstrated.


2005 ◽  
Vol 26 (7) ◽  
pp. 585-597 ◽  
Author(s):  
Salih Ozgocmen ◽  
Huseyin Ozyurt ◽  
Sadik Sogut ◽  
Omer Akyol

Endothelium ◽  
1999 ◽  
Vol 7 (1) ◽  
pp. 1-9 ◽  
Author(s):  
F. H. Mumtaz ◽  
M. A. Khan ◽  
M. E. Sullivan ◽  
C. S. Thompson ◽  
D. P. Mikhailidis ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2330
Author(s):  
Charlotta Bengtson ◽  
Annemie Bogaerts

Cold atmospheric plasma (CAP) is a promising new agent for (selective) cancer treatment, but the underlying cause of the anti-cancer effect of CAP is not well understood yet. Among different theories and observations, one theory in particular has been postulated in great detail and consists of a very complex network of reactions that are claimed to account for the anti-cancer effect of CAP. Here, the key concept is a reactivation of two specific apoptotic cell signaling pathways through catalase inactivation caused by CAP. Thus, it is postulated that the anti-cancer effect of CAP is due to its ability to inactivate catalase, either directly or indirectly. A theoretical investigation of the proposed theory, especially the role of catalase inactivation, can contribute to the understanding of the underlying cause of the anti-cancer effect of CAP. In the present study, we develop a mathematical model to analyze the proposed catalase-dependent anti-cancer effect of CAP. Our results show that a catalase-dependent reactivation of the two apoptotic pathways of interest is unlikely to contribute to the observed anti-cancer effect of CAP. Thus, we believe that other theories of the underlying cause should be considered and evaluated to gain knowledge about the principles of CAP-induced cancer cell death.


2016 ◽  
Vol 21 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Huzefa Vahora ◽  
Munawwar Ali Khan ◽  
Usama Alalami ◽  
Arif Hussain

1998 ◽  
Vol 85 (3) ◽  
pp. 830-834 ◽  
Author(s):  
Shubha Shastry ◽  
Niki M. Dietz ◽  
John R. Halliwill ◽  
Ann S. Reed ◽  
Michael J. Joyner

We sought to examine further the potential role of nitric oxide (NO) in the neurally mediated cutaneous vasodilation in nonacral skin during body heating in humans. Six subjects were heated with a water-perfused suit while cutaneous blood flow was measured by using laser-Doppler flowmeters placed on both forearms. The NO synthase inhibitor N G-monomethyl-l-arginine (l-NMMA) was given selectively to one forearm via a brachial artery catheter after marked cutaneous vasodilation had been established. During body heating, oral temperature increased by 1.1 ± 0.1°C while heart rate increased by 30 ± 6 beats/min. Mean arterial pressure stayed constant at 84 ± 2 mmHg. In the experimental forearm, cutaneous vascular conductance (CVC; laser-Doppler) decreased to 86 ± 5% of the peak response to heating ( P < 0.05 vs. pre-l-NMMA values) afterl-NMMA infusion. In some subjects, l-NMMA caused CVC to fall by ∼30%; in others, it had little impact on the cutaneous circulation. CVC in the control arm showed a similar increase with heating, then stayed constant whilel-NMMA was given to the contralateral side. These results demonstrate that NO contributes modestly, but not consistently, to cutaneous vasodilation during body heating in humans. They also indicate that NO is not the only factor responsible for the dilation.


Sign in / Sign up

Export Citation Format

Share Document