scholarly journals Polyphenol oxidase and enzymatic browning in apricot (Prunus armeniaca L.): Effect on phenolic composition and deduction of main substrates.

Author(s):  
Ala eddine Derardja ◽  
Matthias Pretzler ◽  
Ioannis Kampatsikas ◽  
Milena Radovic ◽  
Anna Fabisikova ◽  
...  
HortScience ◽  
1997 ◽  
Vol 32 (6) ◽  
pp. 1087-1091 ◽  
Author(s):  
M. Radi ◽  
M. Mahrouz ◽  
A. Jaouad ◽  
M. Tacchini ◽  
S. Aubert ◽  
...  

Phenolic composition and susceptibility to browning were determined for nine apricot (Prunus armeniaca L.) cultivars. Chlorogenic and neochlorogenic acids, (+)-catechin and (-)-epicatechin, and rutin (or quercetin-3-rutinoside) were the major phenolic compounds in apricots. In addition to these compounds, other quercetin-3-glycosides and procyanidins have been detected. Chlorogenic acid content decreased rapidly during enzymatic browning, but the susceptibility to browning seemed to be more strongly correlated with the initial amount of flavan-3-ols (defined as catechin monomers and procyanidins). As chlorogenic acid is certainly the best substrate for polyphenol oxidase, the development of brown pigments depended mainly on the flavan-3-ol content.


1981 ◽  
Vol 31 (1) ◽  
pp. 45-60 ◽  
Author(s):  
Lilly V�mos-Vigy�z� ◽  
Ildik� Gajz�g� ◽  
Vikt�ria N�dudvari-M�rkus

2017 ◽  
Vol 65 (37) ◽  
pp. 8203-8212 ◽  
Author(s):  
Ala eddine Derardja ◽  
Matthias Pretzler ◽  
Ioannis Kampatsikas ◽  
Malika Barkat ◽  
Annette Rompel

2021 ◽  
Vol 13 (15) ◽  
pp. 8565
Author(s):  
Seyda Cavusoglu ◽  
Nurettin Yilmaz ◽  
Firat Islek ◽  
Onur Tekin ◽  
Halil Ibrahim Sagbas ◽  
...  

Various treatments are carried out in order to extend both the shelf life and storage life of fresh fruit and vegetables after harvest and among them non-toxic for humans, environmentally and economically friendly alternative treatments are gained more importance. In the current study, methyl jasmonate (MeJA), cytokinin, and lavender oil which are eco-friendly and safe for human health were applied on apricot fruit. The treated fruit were stored at 0 °C and 90–95% relative humidity for 25 days and catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) enzyme activities and lipid peroxidation of apricots after treatments were studied. According to the findings obtained from the study, it was observed that 5 ppm cytokinin and 1000 ppm lavender oil treatments of apricot fruit gave better APX and CAT enzyme activity, respectively. In addition, better SOD enzyme activity in fruit was obtained with MeJA+lavender oil treatments. As a result, it can be emphasized that the product quality of apricot fruit is preserved as both the eco-friendly application of MeJA, cytokinin, and lavender oil separately from each other and the treatment of combinations between these compounds activate the enzymatic antioxidant defense systems of apricot fruit after harvest.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1341
Author(s):  
Giandomenico Corrado ◽  
Marcello Forlani ◽  
Rosa Rao ◽  
Boris Basile

Apricot (Prunus armeniaca L.) is an economically important tree species globally cultivated in temperate areas. Italy has an ample number of traditional varieties, but numerous landraces are abandoned and at risk of extinction because of increasing urbanization, agricultural intensification, and varietal renewal. In this work, we investigated the morphological and genetic diversity present in an ex-situ collection of 28 neglected varieties belonging to the so-called “Vesuvian apricot”. Our aim was to understand the level of diversity and the possible link between the promotion of specific fruit types (e.g., by public policies) and the intraspecific variation in apricot. The combination of five continuous and seven categorical traits allowed us to phenotypically distinguish the varieties; while fruit quality-related attributes displayed high variation, both apricot size and skin colour were more uniform. The twelve fluorescent-based Simple Sequence Repeats (SSRs) markers identified cultivar-specific molecular profiles and revealed a high molecular diversity, which poorly correlated with that described by the morphological analysis. Our results highlighted the complementary information provided by the two sets of descriptors and that DNA markers are necessary to separate morphologically related apricot landraces. The observed morphological and genetic differences suggest a loss of diversity influenced by maintenance breeding of specific pomological traits (e.g., skin colour and size). Finally, our study provided evidence to recommend complementary strategies to avoid the loss of diversity in apricot. Actions should pivot on both the promotion of easily identified premium products and more inclusive biodiversity-centred on-farm strategies.


Sign in / Sign up

Export Citation Format

Share Document