Resistance distance and Kirchhoff index in dihedral Cayley graphs

2022 ◽  
Vol 307 ◽  
pp. 125-134
Author(s):  
Jing Huang
2015 ◽  
Vol 70 (6) ◽  
pp. 459-463 ◽  
Author(s):  
Yujun Yang ◽  
Douglas J. Klein

AbstractTwo resistance-distance-based graph invariants, namely, the Kirchhoff index and the additive degree-Kirchhoff index, are studied. A relation between them is established, with inequalities for the additive degree-Kirchhoff index arising via the Kirchhoff index along with minimum, maximum, and average degrees. Bounds for the Kirchhoff and additive degree-Kirchhoff indices are also determined, and extremal graphs are characterised. In addition, an upper bound for the additive degree-Kirchhoff index is established to improve a previously known result.


Author(s):  
Qun Liu ◽  
Jiabao Liu

Let G[F,Vk, Huv] be the graph with k pockets, where F is a simple graph of order n ≥ 1,Vk= {v1,v2,··· ,vk} is a subset of the vertex set of F and Hvis a simple graph of order m ≥ 2,v is a specified vertex of Hv. Also let G[F,Ek, Huv] be the graph with k edge pockets, where F is a simple graph of order n ≥ 2, Ek= {e1,e2,···ek} is a subset of the edge set of F and Huvis a simple graph of order m ≥ 3, uv is a specified edge of Huvsuch that Huv− u is isomorphic to Huv− v. In this paper, we derive closed-form formulas for resistance distance and Kirchhoff index of G[F,Vk, Hv] and G[F,Ek, Huv] in terms of the resistance distance and Kirchhoff index F, Hv and F, Huv, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yujun Yang

The resistance distance between two vertices of a connected graphGis defined as the effective resistance between them in the corresponding electrical network constructed fromGby replacing each edge ofGwith a unit resistor. The Kirchhoff index ofGis the sum of resistance distances between all pairs of vertices. In this paper, general bounds for the Kirchhoff index are given via the independence number and the clique number, respectively. Moreover, lower and upper bounds for the Kirchhoff index of planar graphs and fullerene graphs are investigated.


2015 ◽  
Vol 70 (3) ◽  
pp. 135-139 ◽  
Author(s):  
Kexiang Xu ◽  
Hongshuang Liu ◽  
Kinkar Ch. Das

AbstractResistance distance was introduced by Klein and Randić as a generalisation of the classical distance. The Kirchhoff index Kf(G) of a graph G is the sum of resistance distances between all unordered pairs of vertices. In this article we characterise the extremal graphs with the maximal Kirchhoff index among all non-trivial quasi-tree graphs of order n. Moreover, we obtain a lower bound on the Kirchhoff index for all non-trivial quasi-tree graphs of order n.


2011 ◽  
Vol 159 (17) ◽  
pp. 2050-2057 ◽  
Author(s):  
Xing Gao ◽  
Yanfeng Luo ◽  
Wenwen Liu

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wei Lin ◽  
Shuming Zhou ◽  
Min Li ◽  
Gaolin Chen ◽  
Qianru Zhou

Large-scale social graph data poses significant challenges for social analytic tools to monitor and analyze social networks. The information-theoretic distance measure, namely, resistance distance, is a vital parameter for ranking influential nodes or community detection. The superiority of resistance distance and Kirchhoff index is that it can reflect the global properties of the graph fairly, and they are widely used in assessment of graph connectivity and robustness. There are various measures of network criticality which have been investigated for underlying networks, while little is known about the corresponding metrics for mixed networks. In this paper, we propose the positive walk algorithm to construct the Hermitian matrix for the mixed graph and then introduce the Hermitian resistance matrix and the Hermitian Kirchhoff index which are based on the eigenvalues and eigenvectors of the Hermitian Laplacian matrix. Meanwhile, we also propose a modified algorithm, the directed traversal algorithm, to select the edges whose removal will maximize the Hermitian Kirchhoff index in the general mixed graph. Finally, we compare the results with the algebraic connectivity to verify the superiority of the proposed strategy.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 102313-102320 ◽  
Author(s):  
Weizhong Wang ◽  
Tingyan Ma ◽  
Jia-Bao Liu

Sign in / Sign up

Export Citation Format

Share Document