scholarly journals Quantum gravity evolution in the Hawking radiation of a rotating regular Hayward black hole

2022 ◽  
pp. 100948
Author(s):  
Riasat Ali ◽  
Rimsha Babar ◽  
P.K. Sahoo
2017 ◽  
Vol 26 (12) ◽  
pp. 1742002 ◽  
Author(s):  
Samir D. Mathur

Suppose we assume that (a) information about a black hole is encoded in its Hawking radiation and (b) causality is not violated to leading order in gently curved spacetime. Then, we argue that spacetime cannot just be described as a manifold with a shape; it must be given an additional attribute which we call “thickness.” This thickness characterizes the spread of the quantum gravity wave functional in superspace — the space of all three-geometries. Low energy particles travel on spacetime without noticing the thickness parameter, so they just see an effective manifold. Objects with energy large enough to create a horizon do note the finite thickness; this modifies the semiclassical evolution in such a way that we avoid horizon formation and the consequent violation of causality.


2018 ◽  
Vol 27 (14) ◽  
pp. 1847028 ◽  
Author(s):  
Ana Alonso-Serrano ◽  
Mariusz P. Da̧browski ◽  
Hussain Gohar

The existence of a minimal length, predicted by different theories of quantum gravity, can be phenomenologically described in terms of a generalized uncertainty principle. We consider the impact of this quantum gravity motivated effect onto the information budget of a black hole and the sparsity of Hawking radiation during the black hole evaporation process. We show that the information is not transmitted at the same rate during the final stages of the evaporation, and that the Hawking radiation is not sparse anymore when the black hole approaches the Planck mass.


2008 ◽  
Vol 17 (13n14) ◽  
pp. 2359-2366 ◽  
Author(s):  
ALEX B. NIELSEN

We discuss some of the drawbacks of using event horizons to define black holes and suggest ways in which black holes can be described without event horizons, using trapping horizons. We show that these trapping horizons give rise to thermodynamic behavior and possibly Hawking radiation too. This raises the issue of whether the event horizon or the trapping horizon should be seen as the true boundary of a black hole. This difference is important if we believe that quantum gravity will resolve the central singularity of the black hole and clarifies several of the issues associated with black hole thermodynamics and information loss.


2020 ◽  
Vol 29 (14) ◽  
pp. 2043011
Author(s):  
Charis Anastopoulos ◽  
Konstantina Savvidou

We explain how Hawking radiation stores significant amount of information in high-order correlations of quantum fields. This information can be retrieved by multi-time measurements on the quantum fields close to the black hole horizon. This result requires no assumptions about quantum gravity, it takes into account the differences between Gibbs’s and Boltzmann’s accounts of thermodynamics, and it clarifies misconceptions about key aspects of Hawking radiation and about informational notions in QFT.


2020 ◽  
Vol 35 (05) ◽  
pp. 2050018
Author(s):  
T. Ibungochouba Singh ◽  
Y. Kenedy Meitei ◽  
I. Ablu Meitei

The Hawking radiation of BTZ black hole is investigated based on generalized uncertainty principle effect by using Hamilton–Jacobi method and Dirac equation. The tunneling probability and the Hawking temperature of the spin-1/2 particles of the BTZ black hole are investigated using the modified Dirac equation based on the GUP. The modified Hawking temperature for fermion crossing the black hole horizon includes the mass parameter of the black hole, angular momentum, energy and also outgoing mass of the emitted particle. Besides, considering the effect of GUP into account, the modified Hawking radiation of massless particle from a BTZ black hole is investigated using Damour and Ruffini method, tortoise coordinate transformation and modified Klein–Gordon equation. The relation between the modified Hawking temperature obtained by using Damour–Ruffini method and the energy of the emitted particle is derived. The original Hawking temperature is also recovered in the absence of quantum gravity effect. There is a possibility of negative Hawking temperature for emission of Dirac particles under quantum gravity effects.


Sign in / Sign up

Export Citation Format

Share Document