Optimizing experimental parameters in sequential CO2 mineralization using seawater desalination brine

Desalination ◽  
2022 ◽  
Vol 519 ◽  
pp. 115309
Author(s):  
Jun-Hwan Bang ◽  
Soo-Chun Chae ◽  
Kyungsun Song ◽  
Seung-Woo Lee
Minerals ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 207 ◽  
Author(s):  
Jun-Hwan Bang ◽  
Yeongsuk Yoo ◽  
Seung-Woo Lee ◽  
Kyungsun Song ◽  
Soochun Chae

2019 ◽  
Author(s):  
Chem Int

The study aims to use an adsorbent natural based of Moroccan oil shale of Timahdit area (Y layer) in a physical-chemical adsorption process for treating industrial discharges colorful. The used adsorbent is the insoluble party of the sub-critical extraction of decarbonized oil shale of Timahdit. The tests performed on the methylene blue (MB), showed a strong elimination in the first 10 minutes. The influences of various experimental parameters were studied: mass ratio of adsorbent, time and temperature of thermal treatment, contact time, pH of MB and heating temperature of solution on the parameters of material were studied. The experimental results have shown that the adsorption of methylene blue dye by the adsorbent is more than 90% at initial pH a range 6-7 at room temperature for 30 minutes. The process is simple and the adsorbent produced is a new material with interesting adsorption capacities of moderate cost which does not require an activating agent and can be used as industrial adsorbent for the decontamination of effluents containing organic pollutants.


2020 ◽  
Vol 16 (6) ◽  
pp. 722-737
Author(s):  
Cigdem Yengin ◽  
Emrah Kilinc ◽  
Fatma Gulay Der ◽  
Mehmet Can Sezgin ◽  
Ilayda Alcin

Background: Reverse İontophoresis (RI) is one of the promising non-invasive technologies. It relies on the transition of low magnitude current through the skin and thus glucose measurement becomes possible as it is extracted from the surface during this porter current flow. Objective: This paper deals with the development and optimization of an RI determination method for glucose. CE dialysis membrane based artificial skin model was developed and the dependence of RI extraction on various experimental parameters was investigated. Method: Dependence of RI extraction performance on noble electrodes (platinum, silver, palladium, ruthenium, rhodium) was checked with CA, CV and DPV, in a wide pH and ionic strength range. Optimizations on inter-electrode distance, potential type and magnitude, extraction time, gel type, membrane MWCO, usage frequency, pretreatment, artificial body fluids were performed. Results: According to the optimized results, the inter-electrode distance was 7.0 mm and silver was the optimum noble metal. Optimum pH and ionic strength were achieved with 0.05M PBS at pH 7.4. Higher glucose yields were obtained with DPV, while CA and CV achieved almost the same levels. During CA, +0.5V achieved the highest glucose yield and higher potential even caused a decrease. Glucose levels could be monitored for 24 hours. CMC gel was the optimum collection media. Pretreated CE membrane with 12kD MWCO was the artificial skin model. Pretreatment affected the yields while its condition caused no significant difference. Except PBS solution (simulated as artificial plasma), among the various artificial simulated body fluids, intestinal juice formulation (AI) and urine formulation U2 were the optimum extraction media, respectively. Conclusion: In this study, various experimental parameters (pretereatment procedure, type and MWCO values of membranes, inter-electrode distance, electrode material, extraction medium solvents, ionic strength and pH, collection medium gel type, extraction potential type and magnitude, extraction time and etc) were optimized for the non-invasive RI determination of glucose in a CE dialysis membrane-based artificial skin model and various simulated artificial body fluids.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 38
Author(s):  
Francisco Rey-García ◽  
Rafael Ibáñez ◽  
Luis Alberto Angurel ◽  
Florinda M. Costa ◽  
Germán F. de la Fuente

The Laser Floating Zone (LFZ) technique, also known as Laser-Heated Pedestal Growth (LHPG), has been developed throughout the last several decades as a simple, fast, and crucible-free method for growing high-crystalline-quality materials, particularly when compared to the more conventional Verneuil, Bridgman–Stockbarger, and Czochralski methods. Multiple worldwide efforts have, over the years, enabled the growth of highly oriented polycrystalline and single-crystal high-melting materials. This work attempted to critically review the most representative advancements in LFZ apparatus and experimental parameters that enable the growth of high-quality polycrystalline materials and single crystals, along with the most commonly produced materials and their relevant physical properties. Emphasis will be given to materials for photonics and optics, as well as for electrical applications, particularly superconducting and thermoelectric materials, and to the growth of metastable phases. Concomitantly, an analysis was carried out on how LFZ may contribute to further understanding equilibrium vs. non-equilibrium phase selectivity, as well as its potential to achieve or contribute to future developments in the growth of crystals for emerging applications.


Author(s):  
O. Icten ◽  
G. Ozgenc ◽  
D. Ozer ◽  
D.A. Kose ◽  
G. Elmaci ◽  
...  

Author(s):  
Iman Mehdipour ◽  
Gabriel Falzone ◽  
Dale Prentice ◽  
Narayanan Neithalath ◽  
Dante Simonetti ◽  
...  

Optimizing the spatial distribution of contacting gas and the gas processing conditions enhances CO2 mineralization reactions and material properties of carbonate-cementitious monoliths.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
René Schwonnek ◽  
Koon Tong Goh ◽  
Ignatius W. Primaatmaja ◽  
Ernest Y.-Z. Tan ◽  
Ramona Wolf ◽  
...  

AbstractDevice-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against channel attacks, but also against attacks exploiting implementation loopholes. In recent years, much progress has been made towards realising the first DIQKD experiments, but current proposals are just out of reach of today’s loophole-free Bell experiments. Here, we significantly narrow the gap between the theory and practice of DIQKD with a simple variant of the original protocol based on the celebrated Clauser-Horne-Shimony-Holt (CHSH) Bell inequality. By using two randomly chosen key generating bases instead of one, we show that our protocol significantly improves over the original DIQKD protocol, enabling positive keys in the high noise regime for the first time. We also compute the finite-key security of the protocol for general attacks, showing that approximately 108–1010 measurement rounds are needed to achieve positive rates using state-of-the-art experimental parameters. Our proposed DIQKD protocol thus represents a highly promising path towards the first realisation of DIQKD in practice.


2021 ◽  
Vol 2 (6) ◽  
pp. 100468
Author(s):  
Lintao Li ◽  
Chenyang Wang ◽  
Kuang Feng ◽  
Dingwang Huang ◽  
Kang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document