Species difference in brain penetration of P-gp and BCRP substrates among monkey, dog and mouse

Author(s):  
Yasuto Kido ◽  
Isamu Nanchi ◽  
Yasuyuki Fusamae ◽  
Takanobu Matsuzaki ◽  
Takanori Akazawa ◽  
...  
Author(s):  
Pravin Patil ◽  
Anil Sharma ◽  
Subhash Dadarwal ◽  
Vijay Sharma

The objective of present investigation was to enhance brain penetration of Lamivudine, one of the most widely used drugs for the treatment of AIDS. This was achieved through incorporating the drug into solid lipid nanoparticles (SLN) prepared by using emulsion solvent diffusion technique. The formulations were characterized for surface morphology, size and size distribution, percent drug entrapment and drug release. The optimum rotation speed, resulting into better drug entrapment and percent yield, was in the range of 1000-1250 r/min. In vitro cumulative % drug release from optimized SLN formulation was found 40-50 % in PBS (pH-7.4) and SGF (pH-1.2) respectively for 10 h. After 24 h more than 65 % of the drug was released from all formulations in both mediums meeting the requirement for drug delivery for prolong period of time.


1997 ◽  
Vol 38 (2) ◽  
pp. 268-272 ◽  
Author(s):  
F. Luzzani ◽  
P. Cipolla ◽  
M. L. Pelaprat ◽  
F. Robert ◽  
C. Gotti ◽  
...  

1958 ◽  
Vol 195 (2) ◽  
pp. 476-480 ◽  
Author(s):  
Nelicia Maier ◽  
Henry Haimovici

Succinic dehydrogenase and cytochrome oxidase activities were determined in homogenates of three aortic segments (ascending and arch, descending thoracic, abdominal) and liver of man, the rabbit and the dog. Both enzymes exhibited the lowest activity in human aorta. Succinic dehydrogenase exhibited the highest activity in the thoracic aorta of the dog and intermediate activity in the latter's abdominal segment and the rabbit's aorta. Cytochrome oxidase, in contrast, exhibited the highest activity in the rabbit's aorta. A slight gradient of decreasing activity from thoracic to abdominal aorta was noted for cytochrome oxidase in both the rabbit and dog and for succinic dehydrogenase in the rabbit, whereas a significant decrease in the latter enzyme was noted in the abdominal segment of the dog. No gradient of activity was apparent in man. Liver exhibited the lowest activity for both enzymes in man, highest in the dog and intermediate in the rabbit. The above findings suggest a biologic species difference between the aorta of man, the rabbit and the dog, which may be partly ascribed to a difference in the components of the above two enzymatic systems. The same species difference holds true for hepatic tissue.


2010 ◽  
Vol 30 (7) ◽  
pp. 725-735 ◽  
Author(s):  
Bernard D Goldstein

Epidemiological findings suggesting that formaldehyde exposure is associated with a higher risk of acute myelogenous leukemia (AML) and other hematological cancers have led to consideration of the potential mechanism of action by which inhalation of this rapidly reactive agent can cause bone marrow cancer. Two major mechanism-based arguments against formaldehyde as a leukemogen have been the difficulty in envisioning how inhaled formaldehyde might penetrate to the bone marrow; and the lack of similarity of non-cancer effects to other known human myeloleukemogens, particularly the absence of pancytopenia in humans or laboratory animals exposed to high levels. However, both of these arguments have been addressed by the recent finding of a pancytopenic effect and chromosomal abnormalities in heavily exposed Chinese workers which, if replicated, are indicative of a genotoxic effect of formaldehyde on hematopoietic stem cells that is in keeping with other known human leukemogens. Review of the body of evidence suggests an apparent discrepancy between studies in laboratory animals, which generally fail to show evidence of penetration of formaldehyde into the blood or evidence of blood or bone marrow genotoxicity, and studies of exposed humans in which there tends to be evidence of genotoxicity in circulating blood cells. One possible explanation for this discrepancy is species difference. Another possible explanation is that myeloid precursors within the nasal mucosa may be the site for leukemogenesis. However, chloromas, which are local collections of myeloid tumor cells, are rarely if ever found in the nose. Other proposed mechanisms for formaldehyde leukemogenesis are reviewed, and dose issues at the interface between the epidemiological and hematotoxicological findings are explored.


Sign in / Sign up

Export Citation Format

Share Document