scholarly journals Concentrated ambient fine particles exposure affects ovarian follicle development in mice

2022 ◽  
Vol 231 ◽  
pp. 113178
Author(s):  
Mingjun Yang ◽  
Fang Tian ◽  
Shimin Tao ◽  
Minjie Xia ◽  
Yuzhu Wang ◽  
...  
Development ◽  
1976 ◽  
Vol 36 (1) ◽  
pp. 13-18
Author(s):  
J. M. Legay

Ovarian follicle development, which accompanies morphogenesis of the silkworm egg has three distinct phases: spheric, ellipsoidal and flattened-ellipsoid. Transitions between phases are rapid and form-stability (characterized by length/width ratio) is preserved from the beginning of the ellipsoidal phase. The geometric stability of the follicle-oocyte-ovariole system, the polarity of the egg and the determinism in form changes reveal strikingly coordinated spatial and temporal organization.


2017 ◽  
Vol 114 (38) ◽  
pp. 10131-10136 ◽  
Author(s):  
Yahav Yosefzon ◽  
Cfir David ◽  
Anna Tsukerman ◽  
Lilach Pnueli ◽  
Sen Qiao ◽  
...  

The TET enzymes catalyze conversion of 5-methyl cytosine (5mC) to 5-hydroxymethyl cytosine (5hmC) and play important roles during development. TET1 has been particularly well-studied in pluripotent stem cells, butTet1-KO mice are viable, and the most marked defect is abnormal ovarian follicle development, resulting in impaired fertility. We hypothesized that TET1 might play a role in the central control of reproduction by regulating expression of the gonadotropin hormones, which are responsible for follicle development and maturation and ovarian function. We find that all three TET enzymes are expressed in gonadotrope-precursor cells, butTet1mRNA levels decrease markedly with completion of cell differentiation, corresponding with an increase in expression of the luteinizing hormone gene,Lhb. We demonstrate that poorly differentiated gonadotropes express a TET1 isoform lacking the N-terminal CXXC-domain, which repressesLhbgene expression directly and does not catalyze 5hmC at the gene promoter. We show that this isoform is also expressed in other differentiated tissues, and that it is regulated by an alternative promoter whose activity is repressed by the liganded estrogen and androgen receptors, and by the hypothalamic gonadotropin-releasing hormone through activation of PKA. Its expression is also regulated by DNA methylation, including at an upstream enhancer that is protected by TET2, to allowTet1expression. The down-regulation of TET1 relieves its repression of the methylatedLhbgene promoter, which is then hydroxymethylated and activated by TET2 for full reproductive competence.


2015 ◽  
Vol 200 ◽  
pp. 79-87 ◽  
Author(s):  
Guang Wang ◽  
Cheung-Kwan Yeung ◽  
Jing-Li Zhang ◽  
Xi-Wen Hu ◽  
Yu-Xiang Ye ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document