scholarly journals Delimiting the spatio-temporal uncertainty of climate-sensitive forest productivity projections using Support Vector Regression

2021 ◽  
Vol 128 ◽  
pp. 107820
Author(s):  
M.A. González-Rodríguez ◽  
U. Diéguez-Aranda
Author(s):  
Khalilur Rahman ◽  
Margaretha Ari Anggorowati ◽  
Agung Andiojaya

<p>Spatio-temporal model forecasting method is a forecasting model that combines forecasting with a function of time and space.  This method is expected to be able to answer the challenge to produce more accurate and representative forecasting. Using the ability of method Support Vector Regression in dealing with data that is mostly patterned non-linear premises n adding a spatial element in the model of forecasting in the form of a model forecasting Spatio- Temporal. Some simulations have done with generating data that follows the Threshold Autoregressive model. The models are correlated into spatial points generated by several sampling methods. Simulation models are generated to comparing the accuracy between model Spatio-Temporal Support Vector Regression and model  ARIMA  based on  Mean  Error,  Mean Average Error, Root Mean Square Error, and Mean Average Percentage Error. Based on the evaluation results, it is shown that forecasting with the Spatio-Temporal Support Vector Regression model has better accuracy than forecasting ARIMA.</p>


2016 ◽  
Vol 136 (12) ◽  
pp. 898-907 ◽  
Author(s):  
Joao Gari da Silva Fonseca Junior ◽  
Hideaki Ohtake ◽  
Takashi Oozeki ◽  
Kazuhiko Ogimoto

2020 ◽  
Author(s):  
Avinash Wesley ◽  
Bharat Mantha ◽  
Ajay Rajeev ◽  
Aimee Taylor ◽  
Mohit Dholi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document