scholarly journals Landscape ecological network construction controlling surface coal mining effect on landscape ecology: A case study of a mining city in semi-arid steppe

2021 ◽  
Vol 133 ◽  
pp. 108403
Author(s):  
Zhenhua Wu ◽  
Shaogang Lei ◽  
Qingwu Yan ◽  
Zhengfu Bian ◽  
Qingqing Lu
Author(s):  
Zhenhua Wu ◽  
Shaogang Lei ◽  
Zhengfu Bian

The ecological background condition of the semi-arid steppe region (SASR) is extremely fragile. It is recognized that the development of coal and electricity power is a kind of strong human interference behavior for regional landscape ecology. Landscape ecological classification (LEC) is the premise of landscape ecology research of the mining area. The current research on the SASR and grassland LEC of coal-power base is relatively less, but still remains uncertainty concerning how to stratify and classify urban mining landscapes into units of ecological significance at spatial scales appropriate for management. This study is based on hierarchy theory, scale theory, landscape process, the patch-corridor-matrix model, the network, the theory of multiple planning integration and the principle of remote sensing. According to the comprehensive principle, principles of the combining of structure and function, principle of the combining human-ominated and natural landscape, principle of emphasis, and principle of combining qualitative analysis with quantitative research of LEC in large-scale coal-power base(LSCPB). On the basis of occurrence method land classification, fully consider the ecological attributes of the land, integration pattern, processes and function theory of the landscape ecology, the LEC system of the LSCPB in the SASR has been constructed by using top-down decomposition classification method. Empirical research of the Victory and Mindong No.1 mining areas of Shenhua Group shows that the classification system constructed in this paper can meet the requirements of LEC and fully reflect the status of landscape ecology of LSCPB in SASR. This study can provide theoretical guidance for the landscape ecology of LSCPB, while also supporting a theoretical reference for the LEC research.


Author(s):  
Zhenhua Wu ◽  
Shaogang Lei ◽  
Bao-Jie He ◽  
Zhengfu Bian ◽  
Yinghong Wang ◽  
...  

The ecological status of the semi-arid steppes in China is fragile. Under the long-term and high-intensity development of mining, the ecological integrity and biodiversity of steppe landscapes have been destroyed, causing soil pollution, grassland degradation, landscape function defect, and so on. Previous studies have mainly focused on ecosystem health assessment in mining areas. Landscape ecological health (LEH) pays more attention to the interactions between different ecosystems. Therefore, the ecological assessment of mining cities is more suitable on a landscape scale. Meanwhile, the existing LEH assessment index systems are not applicable in ecologically fragile areas with sparse population, underdeveloped economy, and in relatively small research areas. The purpose of this study was to construct a LEH assessment index system and evaluate the LEH of a mining city located in a semi-arid steppe. Xilinhot is a typical semi-arid steppe mining city in China. The contradictions between the human, land and ecological environment are serious. A new model Condition, Vigor, Organization, Resilience, and Ecosystem (CVORE) model was constructed that integrated five subsystems (services) from the perspectives of ecology, landscape ecology, mining science, and geography. This study used the CVORE model to systematically evaluate the LEH in Xilinhot city in terms of five LEH levels, including very healthy, healthy, sub-healthy, unhealthy and morbid landscape. Research results show that the areas of the very healthy, healthy, sub-healthy, unhealthy and morbid landscapes are 13.23, 736.35, 184.5, 66.76 and 20.63 km2, respectively. The healthy landscapes area accounts for 72.08% and most grasslands are healthy. The sub-healthy landscapes are mainly located around areas with higher disturbances due to human activities. The morbid or unhealthy landscapes are concentrated in the mining areas. The proposed CVORE model can enrich the foundations for the quantitative assessment of Landscape Ecological Health of Mining Cities in Semi-arid Steppe (LEHMCSS). This study provided a new LEH assessment approach (CVORE model), which can support landscape ecological restoration, ecological environmental protection and urban planning of the semi-arid steppe mining cities.


2020 ◽  
Vol 12 (6) ◽  
pp. 2239 ◽  
Author(s):  
Shougang Wang ◽  
Jiu Huang ◽  
Haochen Yu ◽  
Chuning Ji

The ecological integrity and biodiversity of steppes were destroyed under the long-term and high-intensity development of open-pit coal mines in China, causing desertification, steppe degradation, landscape function defect, and so on. As a source of species maintenance and dispersal, an ecological source is a key area for preservation in order to restore the ecological security pattern of the larger landscape. The purpose of this study was to establish a landscape key area recognition model to identify the landscape key areas (LKA) surrounding an open pit coalmine located in semi-arid steppe. This study takes the Yimin open pit mining area as a case study. We assessed Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) remote sensing images taken during the peak season of vegetation growth from July to August in 1999, 2006, 2011, and 2017. From these images, we identified the main landscape types and vegetation coverage grades in order to identify the ecological land. Next, we applied the three indices of Importance of Patch Connectivity, Habitat Quality, and Ecosystem Service Value to calculate the comprehensive results that identify ecological land. Finally, the ecological land quality results of different years are superimposed and averaged, and then Very Important Patch (VIMP), Important Patch (IMP), and General Patch (GEP) areas were used for LKA extraction. Our results showed LKA to cover 177.35 km2, accounting for 20.01% of the total study area. The landscape types identified as LKA are primarily grassland (47.37%), wetland (40.27%), and shrubland (11.88%), indicating that landscape type correlates strongly with its value as a landscape key area. The proposed landscape key area recognition model could enrich the foundations for ecological planning and ecological security pattern construction in order to support ecological protection and restoration in semi-arid steppe areas affected by coal mining.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Li Ma ◽  
Zhiguo Chang ◽  
Kemin Li ◽  
Shuangshuang Xiao ◽  
Xiaohua Ding

In order to analyze the relationships of inner dumping with covered end wall in adjacent surface coal mining districts, a trough-shaped uncovered end wall model was put forward. A mathematical model concerning uncovered end wall height (UEWH) was established based on minimum cost method. The inner dump capacity was considered regarding its effect on UEWH. Besides, a comprehensive model was established for calculating optimal UEWH in inner dumping with partially covered end wall mode and a shifting distance optimization model based on cost compensation method for building a provisional haulage system to connect inner dump. As for case study in Huolinhe number 1 surface coal mine, research results show that optimal UEWH was 225 m between North Pit and South Pit whereas in number 3 mining district of North Open-Pit Mine it was 23.50 m when making its transition from cross mining to mining along strike. Nevertheless, due to limited inner dump capacity, inner dump height in South and North mining districts shall be appropriately increased and closed pits from earlier period shall be fully utilized to make room for inner dumping with partially uncovered end walls.


Sign in / Sign up

Export Citation Format

Share Document