scholarly journals Effects of land use changes on soil organic carbon, nitrogen and their losses in a typical watershed of the Loess Plateau, China

2021 ◽  
Vol 133 ◽  
pp. 108443
Author(s):  
Guangyu Zhu ◽  
Zhouping Shangguan ◽  
Xinzhi Hu ◽  
Lei Deng
2015 ◽  
Vol 7 (1) ◽  
pp. 115-145 ◽  
Author(s):  
Y. Mohawesh ◽  
A. Taimeh ◽  
F. Ziadat

Abstract. Land degradation resulting from improper land use and management is a major cause of declined productivity in the arid environment. The objectives of this study were to examine the effects of a sequence of land use changes, soil conservation measures, and the time since their implementation on the degradation of selected soil properties. The climate for the selected 105 km2 watershed varies from semi-arid sub-tropical to Mediterranean sub-humid. Land use changes were detected using aerial photographs acquired in 1953, 1978, and 2008. A total of 218 samples were collected from 40 sites in three different rainfall zones to represent different land use changes and different lengths of time since the construction of stone walls. Analyses of variance were used to test the differences between the sequences of land use changes (interchangeable sequences of forest, orchards, field crops, and range), the time since the implementation of soil conservation measures, and rainfall on the thickness of the A-horizon, soil organic carbon content, and texture. Soil organic carbon reacts actively with different combinations and sequences of land use changes. The time since stone walls were constructed showed significant impacts on soil organic carbon and the thickness of the surface horizon. The effects of changing the land use and whether the changes were associated with the construction of stone walls, varied according to the annual rainfall. The results help in understanding the effects of land use changes on land degradation processes and carbon sequestration potential and in formulating sound soil conservation plans.


Solid Earth ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 857-868 ◽  
Author(s):  
Y. Mohawesh ◽  
A. Taimeh ◽  
F. Ziadat

Abstract. Land degradation resulting from improper land use and management is a major cause of declined productivity in the arid environment. The objectives of this study were to examine the effects of a sequence of land use changes, soil conservation measures, and the time since their implementation on the degradation of selected soil properties. The climate for the selected 105 km2 watershed varies from semi-arid sub-tropical to Mediterranean sub-humid. Land use changes were detected using aerial photographs acquired in 1953, 1978, and 2008. A total of 218 samples were collected from 40 sites in three different rainfall zones to represent different land use changes and variable lengths of time since the construction of stone walls. Analyses of variance were used to test the differences between the sequences of land use changes (interchangeable sequences of forest, orchards, field crops, and range), the time since the implementation of soil conservation measures, rainfall on the thickness of the A-horizon, soil organic carbon content, and texture. Soil organic carbon reacts actively with different combinations and sequences of land use changes. The time since stone walls were constructed showed significant impacts on soil organic carbon and the thickness of the surface horizon. The effects of changing the land use and whether the changes were associated with the construction of stone walls varied according to the annual rainfall. The changes in soil properties could be used as indicators of land degradation and to assess the impact of soil conservation programs. The results help in understanding the effects of land use changes on land degradation processes and carbon sequestration potential and in formulating sound soil conservation plans.


2020 ◽  
Author(s):  
Peng Shi ◽  
Yan Zhang ◽  
Kexin Lu ◽  
Zhaohong Feng ◽  
Yang Yu

<p>Vegetation restoration, terrace and check dam construction are the major measures for soil and water conservation on the Loess Plateau. These effective measures of stabilizing soils have significant impacts on soil organic carbon (SOC) distribution. To understand the impact of land-use changes combined with check dam construction on SOC distribution, 1060 soil samples were collected across a watershed on the Loess Plateau. Forestland, shrubland and terrace had significant higher SOC concentrations in the 0-20 cm soil layer than that of sloping cropland.    Land use change affects the process of runoff and sediment transportation, which has an impact on the migration and transformation of soil carbon. The soil erosion of sloping farmland is the most serious, and the maximum annual erosion rate is as high as 10853.56 t·km<sup>-2</sup>. Carbon sedimented in the dam land was mainly from sloping cropland, and this source percentage was 65%. The application of hydrological controls to hillslopes and along river channels should be considered when assessing carbon sequestration within the soil erosion subsystem. </p>


2018 ◽  
Vol 10 (12) ◽  
pp. 4757 ◽  
Author(s):  
Zhijing Xue ◽  
Shaoshan An

Soil organic carbon (SOC) and total nitrogen (total N) are important soil components for agricultural production. Soil quality is related to the total amount of SOC and total N sequestered in the soil. Land use plays a major role in the distribution and amount of SOC and total N. This study analyses the amount of SOC and total N under various land cover types in 1987, 2005 and 2010, and evaluated their storage in land use conversions in a comprehensively managed watershed on the Loess Plateau, China. Results show that concentrations of SOC and total N in shrub land and natural grassland areas were significantly higher than for other land uses (farmland, orchard, abandoned farmland, manmade grassland) while cropland had the lowest concentration. Storage of SOC and total N increased along the revegetation chronosequence. As the storage of SOC in 2005 and 2010, they were 3461.86 × 108 and 4504.04 × 108 g respectively. Soil organic carbon storage were enhanced one third just during 5 years. The effects of land use on SOC and total N were the most significant in the upper soil layers. The correlation between SOC, total N, and the C/N ratio indicated that the best combination of land uses were natural grassland and shrub land. They efficiently influenced the distribution and storage of SOC and total N, and benefited vegetation restoration.


PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e95548 ◽  
Author(s):  
Yaai Dang ◽  
Wei Ren ◽  
Bo Tao ◽  
Guangsheng Chen ◽  
Chaoqun Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document