scholarly journals Global population densities, climate change, and the maximum monthly temperature threshold as a potential tipping point for high urban densities

2022 ◽  
Vol 135 ◽  
pp. 108512
Author(s):  
Brice B. Hanberry
2020 ◽  
Author(s):  
Rubén D. Manzanedo ◽  
Peter Manning

The ongoing COVID-19 outbreak pandemic is now a global crisis. It has caused 1.6+ million confirmed cases and 100 000+ deaths at the time of writing and triggered unprecedented preventative measures that have put a substantial portion of the global population under confinement, imposed isolation, and established ‘social distancing’ as a new global behavioral norm. The COVID-19 crisis has affected all aspects of everyday life and work, while also threatening the health of the global economy. This crisis offers also an unprecedented view of what the global climate crisis may look like. In fact, some of the parallels between the COVID-19 crisis and what we expect from the looming global climate emergency are remarkable. Reflecting upon the most challenging aspects of today’s crisis and how they compare with those expected from the climate change emergency may help us better prepare for the future.


Author(s):  
Andrew Harmer ◽  
Jonathan Kennedy

This chapter explores the relationship between international development and global health. Contrary to the view that development implies ‘good change’, this chapter argues that the discourse of development masks the destructive and exploitative practices of wealthy countries at the expense of poorer ones. These practices, and the unregulated capitalist economic system that they are part of, have created massive inequalities between and within countries, and potentially catastrophic climate change. Both of these outcomes are detrimental to global health and the millennium development goals and sustainable development goals do not challenge these dynamics. While the Sustainable Development Goals acknowledge that inequality and climate change are serious threats to the future of humanity, they fail to address the economic system that created them. Notwithstanding, it is possible that the enormity and proximity of the threat posed by inequality and global warming will energise a counter movement to create what Kate Raworth terms ‘an ecologically safe and socially just space’ for the global population while there is still time.


2021 ◽  
Author(s):  
Litao Wang ◽  
Mu-Jie Lv ◽  
Juan-Yan An ◽  
Xiao-Hong Fan ◽  
Ming-Zhu Dong ◽  
...  

With increasing global population, the reduction of arable land and climate change and incongruity between food supply and demand has become increasingly severe. Nowadays, with the elementary nutrients required for...


2021 ◽  
Author(s):  
Jonathan P. Evans ◽  
Sarah McCarthy-Neumann ◽  
Angus Pritchard ◽  
Jennifer Cartwright ◽  
William Wolfe

2020 ◽  
Vol 12 (17) ◽  
pp. 6992
Author(s):  
Zhuo Wu ◽  
Erfu Dai ◽  
Wenchuan Guan

Subtropical forests face pressure from both rapidly changing climate and increasing harvest activity in southern China. However, the interactive effects of various spatial processes on forests are not well known. The objective of the present study was to answer the question of how forest aboveground biomass (AGB) changes under alternative climate change and harvesting scenarios and to determine whether there will be a tipping point for forest AGB before 2300. Our simulation results show that, although total forest AGB did not reach a tipping point before 2300 under possible climate change and harvesting scenarios, the slope of the total forest AGB showed a decreasing trend around 2100 and 2200. Moderate climate warming was conducive to AGB accumulation, except for in the high emissions Representative Concentration Pathway (RCP8.5) scenario. Our results also indicate that timber harvesting is adaptable to the accumulation of biomass under climate change scenarios. Harvesting intensity was a key variable affecting forest AGB more than harvesting frequency. Our findings will help develop more sustainable forest management strategies that can adapt to potential climate change scenarios, as well as determining the effectiveness of implementing alternative forest harvesting policies.


2005 ◽  
Vol 35 (11) ◽  
pp. 2709-2718 ◽  
Author(s):  
D Goldblum ◽  
L S Rigg

We consider the implications of climate change on the future of the three dominant forest species, sugar maple (Acer saccharum Marsh.), white spruce (Picea glauca (Moench) Voss), and balsam fir (Abies balsamea (L.) Mill.), at the deciduous–boreal forest ecotone, Ontario, Canada. Our analysis is based on individual species responses to past monthly temperature and precipitation conditions in light of modeled (general circulation model) monthly temperature and precipitation conditions in the study area for the 2080s. We then consider the tree species sensitivity to past climate with predicted conditions for the 2080 period. Sugar maple, located at its northern limit in the study area, shows the greatest potential for increased growth rates under the predicted warming and altered precipitation regime. White spruce is likely to benefit less, while the understory dominant balsam fir is likely to experience a decrease in growth potential. These projected changes would enhance the future status of sugar maple at its northern limit and facilitate range expansion northward in response to global warming.


Sign in / Sign up

Export Citation Format

Share Document