scholarly journals A computational model approach to assess the effect of climate change on the growth and development of tadpoles

2021 ◽  
Vol 461 ◽  
pp. 109763
Author(s):  
Mª Àngels Colomer ◽  
Antoni Margalida ◽  
Isabel Sanuy ◽  
Gustavo A. Llorente ◽  
Delfí Sanuy ◽  
...  
Author(s):  
Shraddha S. Garud

The prime need of this world is that the simplest agriculture which decides the event of each country because the survival of the individual is completely obsessed with farming and its best production. Climate changes are in response to changes within the hydrosphere, biosphere, and other atmospheric and interacting factors. Human activities driven by demographic, economic, technological, and social changes have a big impact on activity. The climate influences the incidence further as the temporal and spatial distribution of plant diseases. the foremost factors that control the growth and development of diseases are temperature, light, and water. Climate affects all life stages of the pathogen and host and poses a challenge to many pathosystems. The environmental change, especially when combined with the pathogen and host introductions, may cause unprecedented effects.


2021 ◽  
Author(s):  
Emmanuel Junior Zuza ◽  
Yoseph Negusse Araya ◽  
Kadmiel Maseyk ◽  
Shonil A Bhagwat ◽  
Kaue de Sousa ◽  
...  

Climate change is altering suitable areas of crop species worldwide, with cascading effects on people and animals reliant upon those crop species as food sources. Macadamia is one of Malawi's most important and profitable crop species. Here, we used an ensemble model approach to determine the current distribution of macadamia producing areas across Malawi in relation to climate. For future distribution of suitable areas, we used the climate outputs of 17 general circulation models (GCM's) based on two climate change scenarios (RCP 4.5 and RCP 8.5). We found that the precipitation of the driest month and isothermality were the climatic variables that strongly influenced macadamia's suitability in Malawi. These climatic requirements were fulfilled across many areas in Malawi under the current conditions. Future projections indicated that large parts of Malawi's macadamia growing regions will remain suitable for macadamia, amounting to 36,910 km2 (39.1%) and 33,511 km2 (35.5%) of land based on RCP 4.5 and RCP 8.5, respectively. Of concern, suitable areas for macadamia production are predicted to shrink by −18% (17,015 km2) and −22% (20,414 km2) based on RCP 4.5 and RCP 8.5, respectively, with much of the suitability shifting northwards. Although a net loss of area suitable for macadamia is predicted, some currently unsuitable areas will become suitable in the future. Notably, suitable areas will increase in Malawi's central and northern regions, while the southern region will lose most of its suitable areas. In conclusion, our study provides critical evidence that climate change will significantly affect the macadamia sub-sector in Malawi. Therefore area-specific adaptation strategies are required to build resilience.


2017 ◽  
Vol 141 (4) ◽  
pp. 733-746 ◽  
Author(s):  
Luciana Torre ◽  
Paulo C. Carmona Tabares ◽  
Fernando Momo ◽  
João F. C. A. Meyer ◽  
Ricardo Sahade

2020 ◽  
Vol 9 (4) ◽  
pp. 42
Author(s):  
Cynthia W. Angba ◽  
Richard N. Baines ◽  
Allan J. Butler

This study addressed yam production in response to climate change in Cross River State using a co-integration model approach. The specific objectives of this paper are to analyze the trend in yam production, annual precipitation, and annual temperature, and to analyze the impact of climate variables on yam production. Time-series data from 1996 to 2017 was used. Based on the analysis, which constituted a linear trend analysis, co-integration test, and error correction model, the study came up with robust findings. The linear trend analysis for yam production revealed a steady increase in output between the years 2005 and 2016. The result of the rainfall trend analysis showed the presence of rainfall variability and irregularity. The trend line for temperature showed an overall downward trend for the period under study. However, the Error Correction Model result showed that temperature was statistically significant and negatively impacted yam production. The study recommends that policymakers should take appropriate steps to encourage the development of pest- and disease-tolerant yam varieties because an increase in temperature leads to the proliferation of insects, pests, and diseases.


2018 ◽  
Vol 15 ◽  
pp. 28-44
Author(s):  
Dhirendar Kumar Pradhan ◽  
Christine Cahalan ◽  
Sunita Ulak

Climate is one of the major factors that govern the distribution of tree species. Climate change has already affected the growth, structure and distribution of trees and woodlands. Global climate change projections are wetter winters, drier summers and significance changes in temperature regimes in the next few decades. The main objective of this study was to experimentally demonstrate the effects of decline in summer rainfall, as predicted by UKCP09/IPCC, on height and diameter growth in two co-occurring silver birch (Betula pendula Roth) and downy birch (Betula pubescens Ehrh) and provide further understanding of the changes in growth and development in response to a decrease in water availability. One-year-old seedlings were grown in a temperature-controlled greenhouse for eight weeks in a split-plot experimental design. Their height and diameter were measured and analyzed. Result showed that plant height and diameter was significantly reduced with increased water stress. B. pendula showed higher physiological traits indicating that this species can perform better than B. pubescensin water-deficit conditions.


2011 ◽  
Vol 279 (1734) ◽  
pp. 1840-1846 ◽  
Author(s):  
Wenyun Zuo ◽  
Melanie E. Moses ◽  
Geoffrey B. West ◽  
Chen Hou ◽  
James H. Brown

The temperature size rule (TSR) is the tendency for ectotherms to develop faster but mature at smaller body sizes at higher temperatures. It can be explained by a simple model in which the rate of growth or biomass accumulation and the rate of development have different temperature dependence. The model accounts for both TSR and the less frequently observed reverse-TSR, predicts the fraction of energy allocated to maintenance and synthesis over the course of development, and also predicts that less total energy is expended when developing at warmer temperatures for TSR and vice versa for reverse-TSR. It has important implications for effects of climate change on ectothermic animals.


Sign in / Sign up

Export Citation Format

Share Document