scholarly journals Linking management practices and soil properties to Ecosystem Services in Mediterranean mixed orchards

2022 ◽  
Vol 53 ◽  
pp. 101378
Author(s):  
Sotiroula C. Ioannidou ◽  
Vassilis D. Litskas ◽  
Menelaos C. Stavrinides ◽  
Ioannis N. Vogiatzakis
Soil Research ◽  
2019 ◽  
Vol 57 (2) ◽  
pp. 200 ◽  
Author(s):  
J. Somasundaram ◽  
M. Salikram ◽  
N. K. Sinha ◽  
M. Mohanty ◽  
R. S. Chaudhary ◽  
...  

Conservation agriculture (CA) including reduced or no-tillage and crop residue retention, is known to be a self–sustainable system as well as an alternative to residue burning. The present study evaluated the effect of reduced tillage coupled with residue retention under different cropping systems on soil properties and crop yields in a Vertisol of a semiarid region of central India. Two tillage systems – conventional tillage (CT) with residue removed, and reduced tillage (RT) with residue retained – and six major cropping systems of this region were examined after 3 years of experimentation. Results demonstrated that soil moisture content, mean weight diameter, percent water stable aggregates (>0.25mm) for the 0–15cm soil layer were significantly (Pmoderately labile>less labile. At the 0–15cm depth, the contributions of moderately labile, less labile and non-labile C fractions to total organic C were 39.3%, 10.3% and 50.4% respectively in RT and corresponding values for CT were 38.9%, 11.7% and 49.4%. Significant differences in different C fractions were observed between RT and CT. Soil microbial biomass C concentration was significantly higher in RT than CT at 0–15cm depth. The maize–chickpea cropping system had significantly (P–1 followed by soybean+pigeon pea (2:1) intercropping (3.50 t ha–1) and soybean–wheat cropping systems (2.97 t ha–1). Thus, CA practices could be sustainable management practices for improving soil health and crop yields of rainfed Vertisols in these semiarid regions.


1988 ◽  
Vol 68 (2) ◽  
pp. 209-221 ◽  
Author(s):  
C. Chang ◽  
T. G. SOMMERFELDT ◽  
T. ENTZ

Knowledge of the variability of soluble salt content in saline soils can assist in designing experiments or developing management practices to manage and reclaim salt-affected soils. Geostatistical theory enables the use of spatial dependence of soil properties to obtain information about locations in the field that are not actually measured, but classical statistical methods do not consider spatial correlation and the relative location of samples. A study was carried out using both classical statistics and geostatistical methods to delineate salinity and sand content and their variability in a small area of irrigated saline soil. Soil samples were taken for electrical conductivity (EC) and particle size distribution determinations at 64 locations from a 20 × 25-m area, on an 8 × 8-grid pattern at depth intervals of 0–15, 15–30, 30–60, 60–90 and 90–120 cm. The high coefficient of variation (CV) values of both EC and sand content indicated that the soil was highly variable with respect to these soil properties. The semivariograms of sand content of the first two depth intervals and EC of all the depth intervals showed strong spatial relationships. Contour maps, generated by block kriging, based on spatial relationships provide estimated variances which are smaller than general variances calculated by the classical statistical method. The interpolated EC results by both ordinary and universal kriging methods were compared and were almost identical. The kriged maps can provide information useful for designing experiments and for determining soil sampling strategy. Key words: Salinity, texture, variability, geostatistics, semivariogram, kriging


2021 ◽  
Vol 125 ◽  
pp. 107425
Author(s):  
Shengkun Li ◽  
Xiaobing Li ◽  
Huashun Dou ◽  
Dongliang Dang ◽  
Jirui Gong

Land ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Rok Mihelič ◽  
Jure Pečnik ◽  
Matjaž Glavan ◽  
Marina Pintar

Maintaining good soil quality is crucial for the sustainability of agriculture. This study aimed to evaluate the effectiveness of the visual soil assessment (VSA) method by testing it on two soil types and two agricultural management practices (AMP) (organic and integrated) that are considered to protect soil quality. We selected two farms with plots on two river terraces with different soil properties. The test was based on the modified method Annual Crops Visual Quality Assessment developed by the Food and Agriculture Organization of the United Nations and supported by a standardized soil physical and chemical analysis. This study showed that the assessed score is highly dependent on the type of farming practice and how soils are managed. The soil type also plays an important role. The results for Calcaric Fluvisol showed that the effects of selected agricultural management practices on the visual assessment of soil quality could be almost undetectable. The time of assessment also plays a significant role in VSA scoring. Different crops and agricultural activities with significant impacts on the soil occur throughout the year (especially in vegetable production). It was observed that a higher score for the soil cover indicator had a beneficial effect on the total VSA rating.


Author(s):  
Juliana Vantellingen ◽  
Sean C. Thomas

Log landings are areas within managed forests used to process and store felled trees prior to transport. Through their construction and use soil is removed or redistributed, compacted, and organic matter contents may be increased by incorporation of wood fragments. The effects of these changes to soil properties on methane (CH<sub>4</sub>) flux is unclear and unstudied. We quantified CH<sub>4</sub> flux rates from year-old landings in Ontario, Canada, and examined spatial variability and relationships to soil properties within these sites. Landings emitted CH<sub>4</sub> throughout the growing season; the average CH<sub>4</sub> emission rate from log landings was 69.2 ± 12.8 nmol m<sup>-2</sup> s<sup>-1</sup> (26.2 ± 4.8 g CH<sub>4</sub> C m<sup>-2</sup> y<sup>-1</sup>), a rate comparable to CH<sub>4</sub>-emitting wetlands. Emission rates were correlated to soil pH, organic matter content and quantities of buried woody debris. These properties led to strong CH<sub>4</sub> emissions, or “hotspots”, in certain areas of landings, particularly where processing of logs occurred and incorporated woody debris into the soil. At the forest level, emissions from landings were estimated to offset ~12% of CH<sub>4</sub> consumption from soils within the harvest area, although making up only ~0.5% of the harvest area. Management practices to avoid or remediate these emissions should be developed as a priority measure in “climate-smart” forestry.


Sign in / Sign up

Export Citation Format

Share Document