scholarly journals Flexible optimal scheduling of power system based on renewable energy and electric vehicles

2022 ◽  
Vol 8 ◽  
pp. 1414-1422
Author(s):  
Jiawei Feng ◽  
Junyou Yang ◽  
Haixin Wang ◽  
Kang Wang ◽  
Huichao Ji ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1849 ◽  
Author(s):  
Yumiko Iwafune ◽  
Kazuhiko Ogimoto ◽  
Hitoshi Azuma

We propose a model for the integration of electric vehicles (EVs) into the grid power system in Japan. The potential of the switchover from conventional vehicles to EVs and the incurred charging loads for the EV fleet were evaluated based on the results of a Japanese road traffic census. Furthermore, an EV battery operation model was incorporated into the production cost analysis model, which is capable of determining the optimal electricity supply and demand, considering the existing interconnector power flows. The potential economic and environmental contributions of EV charge and discharge controls, with the ultimate goal of realizing the introduction of a massive renewable energy source in the future, were also evaluated. We found that EVs can greatly contribute to expanding the use of renewable energy and reducing system cost by charging and discharging not only at the owner’s home but also at his/her workplace.


Author(s):  
Niklas Wulff ◽  
Felix Steck ◽  
Hans Christian Gils ◽  
Carsten Hoyer-Klick ◽  
Bent van den Adel ◽  
...  

Battery electric vehicles provide an opportunity to balance supply and demand in future power systems with high shares of fluctuating renewable energy. Compared to other storage systems such as pumped-storage hydroelectricity, electric vehicle energy demand is highly dependent on charging and connection choices of vehicle users. We present a model framework of a utility-based stock and flow model, a utility-based microsimulation of charging decisions, and an energy system model including respective interfaces to assess how the representation of battery electric vehicle charging affects energy system optimization results. We then apply the framework to a scenario study for controlled charging of nine million electric vehicles in Germany in 2030. Assuming a respective fleet power demand of 27 TWh, we analyze the difference between power-system-based and vehicle user-based charging decisions in two respective scenarios. Our results show that taking into account vehicle users’ charging and connection decisions significantly decreases the load shifting potential of controlled charging. The analysis of marginal values of equations and variables of the optimization problem yields valuable insights on the importance of specific constraints and optimization variables. In particular, state-of-charge assumptions and representing fast charging drive curtailment of renewable energy feed-in and required gas power plant flexibility. A detailed representation of fleet charge connection is less important. Peak load can be significantly reduced by 5% and 3% in both scenarios, respectively. Shifted load is very robust across sensitivity analyses while other model results such as curtailment are more sensitive to factors such as underlying data years. Analyzing the importance of increased BEV fleet battery availability for power systems with different weather and electricity demand characteristics should be further scrutinized.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1093 ◽  
Author(s):  
Niklas Wulff ◽  
Felix Steck ◽  
Hans Christian Gils ◽  
Carsten Hoyer-Klick ◽  
Bent van den Adel ◽  
...  

Battery electric vehicles (BEV) provide an opportunity to balance supply and demand in future power systems with high shares of fluctuating renewable energy. Compared to other storage systems such as pumped-storage hydroelectricity, electric vehicle energy demand is highly dependent on charging and connection choices of vehicle users. We present a model framework of a utility-based stock and flow model, a utility-based microsimulation of charging decisions, and an energy system model including respective interfaces to assess how the representation of battery electric vehicle charging affects energy system optimization results. We then apply the framework to a scenario study for controlled charging of nine million electric vehicles in Germany in 2030. Assuming a respective fleet power demand of 27 TWh, we analyze the difference between power-system-based and vehicle user-based charging decisions in two respective scenarios. Our results show that taking into account vehicle users’ charging and connection decisions significantly decreases the load shifting potential of controlled charging. The analysis of marginal values of equations and variables of the optimization problem yields valuable insights on the importance of specific constraints and optimization variables. Assumptions on fleet battery availability and a detailed representation of fast charging are found to have a strong impact on wind curtailment, renewable energy feed-in, and required gas power plant flexibility. A representation of fleet connection to the grid in high temporal detail is less important. Peak load can be reduced by 5% and 3% in both scenarios, respectively. Shifted load is robust across sensitivity analyses while other model results such as curtailment are more sensitive to factors such as underlying data years. Analyzing the importance of increased BEV fleet battery availability for power systems with different weather and electricity demand characteristics should be further scrutinized.


Sign in / Sign up

Export Citation Format

Share Document