scholarly journals Multi-objective optimal design of permanent magnet eddy current retarder based on NSGA-II algorithm

2022 ◽  
Vol 8 ◽  
pp. 1448-1456
Author(s):  
Bowen Niu ◽  
Dazhi Wang ◽  
Pengyi Pan
2017 ◽  
Vol 64 (4) ◽  
pp. 2962-2971 ◽  
Author(s):  
Shuai Wu ◽  
Xiangyu Zhao ◽  
Zongxia Jiao ◽  
Patrick Chi-Kwong Luk ◽  
Chenxiao Jiu

Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 156
Author(s):  
Rongchao Jiang ◽  
Shukun Ci ◽  
Dawei Liu ◽  
Xiaodong Cheng ◽  
Zhenkuan Pan

The lightweight design of vehicle components is regarded as a complex optimization problem, which usually needs to achieve two or more optimization objectives. It can be firstly solved by a multi-objective optimization algorithm for generating Pareto solutions, before then seeking the optimal design. However, it is difficult to determine the optimal design for lack of engineering knowledge about ideal and nadir values. Therefore, this paper proposes a multi-objective optimization procedure combined with the NSGA-II algorithm with entropy weighted TOPSIS for the lightweight design of the dump truck carriage. The finite element model of the dump truck carriage was firstly developed for modal analysis under unconstrained free state and strength analysis under the full load and lifting conditions. On this basis, the multi-objective lightweight optimization of the dump truck carriage was carried out based on the Kriging surrogate model and the NSGA-II algorithm. Then, the entropy weight TOPSIS method was employed to select the optimal design of the dump truck from Pareto solutions. The results show that the optimized dump truck carriage achieves a remarkable mass reduction of 81 kg, as much as 3.7%, while its first-order natural frequency and strength performance are slightly improved compared with the original model. Accordingly, the proposed procedure provides an effective way for vehicle lightweight design.


2018 ◽  
Vol 875 ◽  
pp. 105-112 ◽  
Author(s):  
Van Quynh Le ◽  
Khac Tuan Nguyen

In order to improve the vibratory roller ride comfort, a multi-objective optimization method based on the improved genetic algorithm NSGA-II is proposed to optimize the design parameters of cab’s isolation system when vehicle operates under the different conditions. To achieve this goal, 3D nonlinear dynamic model of a single drum vibratory roller was developed based on the analysis of the interaction between vibratory roller and soil. The weighted r.m.s acceleration responses of the vertical driver’s seat, pitch and roll angle of the cab are chosen as the objective functions. The optimal design parameters of cab’s isolation system are indentified based on a combination of the vehicle nonlinear dynamic model of Matlab/Simulink and the NSGA - II genetic algorithm method. The results indicate that three objective function values are reduced significantly to improve vehicle ride comfort.


2013 ◽  
Vol 756-759 ◽  
pp. 3136-3140
Author(s):  
Zhuo Yi Yang ◽  
Yong Jie Pang ◽  
Shao Lian Ma

Multi-objective arithmetic NSGA-II based on Pareto solution is investigated to deal with integrated optimal design of speedability and manoeuvre performances for submersible. Approximation model of resistance for serial revolving shape is constructed by hydrodynamic numerical calculations. The appraisement criterions of stability and mobility are calculated from linear equation of horizontal movement by estimating hydrodynamic coefficient of submersible. After optimization, the scattered Pareto solution of drag and turning diameter are gained, and from the solutions designer can select the reasonable one based on the actual requirement. The Pareto solution can ensure the minimum drag in this manoeuvre performance or the best manoeuvre performance in this drag value.


Sign in / Sign up

Export Citation Format

Share Document