scholarly journals A comprehensive evaluation of a novel integrated system consisting of hydrogen boil-off gas reliquifying process and polymer exchange membrane fuel cell using exergoeconomic and Markov analyses

2022 ◽  
Vol 8 ◽  
pp. 1283-1297
Author(s):  
Armin Ebrahimi ◽  
Bahram Ghorbani ◽  
Mostafa Delpisheh ◽  
Mohammad Hossein Ahmadi
2022 ◽  
pp. 1-33
Author(s):  
Xiuqin Zhang ◽  
Wentao Cheng ◽  
Qiubao Lin ◽  
Longquan Wu ◽  
Junyi Wang ◽  
...  

Abstract Proton exchange membrane fuel cells (PEMFCs) based on syngas are a promising technology for electric vehicle applications. To increase the fuel conversion efficiency, the low-temperature waste heat from the PEMFC is absorbed by a refrigerator. The absorption refrigerator provides cool air for the interior space of the vehicle. Between finishing the steam reforming reaction and flowing into the fuel cell, the gases release heat continuously. A Brayton engine is introduced to absorb heat and provide a useful power output. A novel thermodynamic model of the integrated system of the PEMFC, refrigerator, and Brayton engine is established. Expressions for the power output and efficiency of the integrated system are derived. The effects of some key parameters are discussed in detail to attain optimum performance of the integrated system. The simulation results show that when the syngas consumption rate is 4.0 × 10−5 mol s−1cm−2, the integrated system operates in an optimum state, and the product of the efficiency and power density reaches a maximum. In this case, the efficiency and power density of the integrated system are 0.28 and 0.96 J s−1 cm−2, respectively, which are 46% higher than those of a PEMFC.


2020 ◽  
Author(s):  
Hassan Ali Ozgoli ◽  
Sadegh Safari ◽  
Mohammad Hossein Sharifi

In this study, a novel integrated system of a Biomass Gasification (BG) system with a Proton Exchange Membrane Fuel Cell (PEMFC) and a Vanadium Redox Flow Battery (VRB) is suggested and has focused on both power generation and storage ability of the system. Effect of some key parameters including, current density, voltage, gasification efficiency, low heating value, high heating value, oxygen equivalence ratio, efficiency has taken into consideration. Also, a water-gas shift reactor, as a preferential oxidation reactor, are facilitated to purify syngas and reduce the CO content to use in the PEMFC. The richest H2 amount and lower CO was obtained from the Sugarcane in which it provides 32 mol.% H2 and 18 mol.% CO. A sensitivity analysis of the load level impact on the PEMFC system has been studied in which at 5 kW electrical load, the electrical and the thermal efficiencies of the integrated system have an estimated 22% and 32%, respectively. Furthermore, by employing the waste heat recovery system, the overall efficiency has improved by up to 58%. Besides, the findings provide a potential mechanism for employing the proposed integrated system in distributed generation, individually in rural areas, where plenty of feedstock sources are available.


Author(s):  
Hsiao-Kang Ma ◽  
Jyun-Sheng Wang ◽  
Wei-Han Su ◽  
Wei-Yang Cheng

Previous studies of a bi-cell piezoelectric proton exchange membrane fuel cell with a nozzle and diffuser (PZT-PEMFC-ND bi-cell) have shown that the performance of the PZT-PEMFC-ND bi-cell could be 1.6 times greater than that of the single cell when the proper aspect ratio (AR) of 11.25 and the diffuser angle of 5° are applied to the diffuser. In this study, the novel pseudo-bipolar bi-cell module was designated parallel with an 8 cm2 reaction area, an AR of 5.63, and a diffuser angle 10°. The bi-cell module was operated under various operating conditions, including different operating temperatures, bi-cell circuit and intake module on anode, the performance of the bi-cell and the two component cells, and to optimize the integrated system output. The pump performance of the PZT-PEMFC-ND may be influenced by the asymmetric amplitude of the PZT device. The asymmetric amplitude results in different air flow rates through the cathode chamber of the component cells and in different current outputs for the component cells. For the different intake modules, the power of bi-cells at flow parallel and series will produce maximum power as 0.283 W cm−2 and 0.263 W cm−2, respectively. The power consumption of the PZT device should be taken into consideration when determining the net power of the PZT-PEMFC-ND bi-cell. In this study, the maximum net power of the bi-cell was found to be 0.7W.


2019 ◽  
Author(s):  
Valentina Guccini ◽  
Annika Carlson ◽  
Shun Yu ◽  
Göran Lindbergh ◽  
Rakel Wreland Lindström ◽  
...  

The performance of thin carboxylated cellulose nanofiber-based (CNF) membranes as proton exchange membranes in fuel cells has been measured in-situ as a function of CNF surface charge density (600 and 1550 µmol g<sup>-1</sup>), counterion (H<sup>+</sup>or Na<sup>+</sup>), membrane thickness and fuel cell relative humidity (RH 55 to 95 %). The structural evolution of the membranes as a function of RH as measured by Small Angle X-ray scattering shows that water channels are formed only above 75 % RH. The amount of absorbed water was shown to depend on the membrane surface charge and counter ions (Na<sup>+</sup>or H<sup>+</sup>). The high affinity of CNF for water and the high aspect ratio of the nanofibers, together with a well-defined and homogenous membrane structure, ensures a proton conductivity exceeding 1 mS cm<sup>-1</sup>at 30 °C between 65 and 95 % RH. This is two orders of magnitude larger than previously reported values for cellulose materials and only one order of magnitude lower than Nafion 212. Moreover, the CNF membranes are characterized by a lower hydrogen crossover than Nafion, despite being ≈ 30 % thinner. Thanks to their environmental compatibility and promising fuel cell performance the CNF membranes should be considered for new generation proton exchange membrane fuel cells.<br>


Sign in / Sign up

Export Citation Format

Share Document