KM-416, a novel phenoxyalkylaminoalkanol derivative with anticonvulsant properties exerts analgesic, local anesthetic, and antidepressant-like activities. Pharmacodynamic, pharmacokinetic, and forced degradation studies

2020 ◽  
Vol 886 ◽  
pp. 173540
Author(s):  
Monika Kubacka ◽  
Anna Rapacz ◽  
Kinga Sałat ◽  
Barbara Filipek ◽  
Agnieszka Cios ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dimal A. Shah ◽  
Ishita I. Gondalia ◽  
Vandana B. Patel ◽  
Ashok Mahajan ◽  
Usmangani Chhalotiya ◽  
...  

Abstract Background A sensitive, precise, and stability-indicating high-performance thin-layer chromatographic (HPTLC) method has been developed for the analysis of Remogliflozin etabonate in tablet formulation. HPTLC plates precoated with silica gel 60 F254 were used as the stationary phase; methanol: ethyl acetate: toluene: NH3 (2:4:4:0.1, v/v/v) was used as mobile phase, and densitometry was used for the quantitative estimation of the drug. The proposed method was validated with respect to linearity, accuracy, precision, and robustness and applied for the estimation of drug in tablet dosage form. Results The Rf value of Remogliflozin etabonate was observed to be 0.61. The densitometric estimation was performed in reflectance mode at 229 nm. The method was found to be linear in the range of 500–8000 ng/band for Remogliflozin etabonate. The possible degradation pathway was estimated by performing forced degradation studies. The degradant peaks were well resolved from the drug peak with acceptable resolution in their Rf value. Conclusion An accurate and precise high-performance thin-layer chromatographic method has been developed for the quantification of Remogliflozin etabonate in tablets. Forced degradation studies were performed, and drug was found to be highly susceptible to acid, base hydrolysis, and oxidative stress degradation and gets converted into active drug Remogliflozin. Both Remogliflozin etabonate and Remogliflozin bands were well resolved. The method was applied for the analysis of drug in tablet formulation, and it can be used for routine quality control analysis, as well as for the analysis of stability samples.


2021 ◽  
Author(s):  
Abderrazaq Hamdache ◽  
Lamia Grib ◽  
Celia Grib ◽  
Lydia Adour ◽  
Hakim Zatout ◽  
...  

2017 ◽  
Vol 9 (5) ◽  
pp. 121 ◽  
Author(s):  
Hemant K. Jain ◽  
Archana A. Gunjal

Objective: To develop an accurate, simple, precise and specific stability indicating RP-HPLC method for estimation of dimethyl fumarate in bulk and capsules.Methods: An Inertsil ODS (150x4.6 mm, 5µ) column and a mobile phase containing acetonitrile: potassium dihydrogen phosphate buffer pH 6.8 (50:50% v/v) was used for this study. The flow rate was maintained at 1.0 ml/min; column temperature was fixed at 35 °C and UV detection was carried out at 210 nm. The forced degradation studies were performed and method was validated with as per ICH guidelines.Results: The retention time of dimethyl fumarate was found to be 3.3±0.02 min. The value of correlation coefficient between peak area and concentration was found to be 0.9993. The mean percent recovery of dimethyl fumarate in capsules was found in the range of 99.65 to 101.64%. The results of forced degradation studies indicated that the drug was found to be stable in basic, oxidative and thermal conditions while degraded in acidic conditions.Conclusion: It can be conducted from results that the developed HPLC method is simple, accurate, precise and specific. Results of stress testing study revealed that the method is stability indicating. Thus, this method can be used for routine analysis of dimethyl fumarate capsules and check their stability.  


2013 ◽  
Vol 19 (4) ◽  
pp. 471-484
Author(s):  
Pritam Jain ◽  
Miketa Patel ◽  
Amar Chaudhari ◽  
Sanjay Surana

A simple, specific, accurate and precise reverse phase high pressure liquid chromatographic method has been developed for the simultaneous determination of Paracetamol and Lornoxicam from tablets and to characterize degradation products of Lornoxicam by reverse phase C18 column (Inertsil ODS 3V C-18, 250 x 4.6 mm, 5 ?). The sample was analyzed using Buffer (0.02504 Molar): Methanol in the ratio of 45:55, as a mobile phase at a flow rate of 1.5 mL/min and detection at 290 nm. The retention time for Paracetamol and Lornoxicam was found to be 2.45 and 9.40 min respectively. The method can be used for estimation of combination of these drugs in tablets. The method was validated as per ICH guidelines. The linearity of developed method was achieved in the range of 249.09 - 747.29 ?g/mL (r2=0.9999) for Paracetamol and 4.0125 - 12.0375 ?g/mL (r2=0.9999) for Lornoxicam. Recoveries from tablets were between 98 and 102%. The method was validated with respect to linearity, accuracy, precision, robustness and forced degradation studies which further proved the stability-indicating power. During the forced degradation studies lornoxicam was observed to be labile to alkaline hydrolytic stress and oxidative stress (in the solution form). However, it was stable to the acid hydrolytic, photolytic and thermal stress (in both solid and solution form). The degraded products formed were investigated by electrospray ionization (ESI) time-of-flight mass spectrometry, NMR and IR spectroscopy. A possible degradation pathway was outlined based on the results. The method was found to be sensitive with a detection limit of 0.193 ?g/ml, 2.768 ?g/ml and a quantitation limit of 0.638 ?g/ml, 9.137 ?g/ml for lornoxicam and paracetamol, respectively. Due to these attributes, the proposed method could be used for routine quality control analysis of these drugs in combined dosage forms.


Author(s):  
Manvi Hasija ◽  
Sepideh Aboutorabian ◽  
Nausheen Rahman ◽  
Salvador F. Ausar

Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 725 ◽  
Author(s):  
Loewe ◽  
Häussler ◽  
Grein ◽  
Dieken ◽  
Weidner ◽  
...  

Oncolytic measles virus (MV) is a promising treatment for cancer but titers of up to 1011 infectious particles per dose are needed for therapeutic efficacy, which requires an efficient, robust, and scalable production process. MV is highly sensitive to process conditions, and a substantial fraction of the virus is lost during current purification processes. We therefore conducted forced degradation studies under thermal, pH, chemical, and mechanical stress to determine critical process parameters. We found that MV remained stable following up to five freeze–thaw cycles, but was inactivated during short-term incubation (< 2 h) at temperatures exceeding 35 °C. The infectivity of MV declined at pH < 7, but was not influenced by different buffer systems or the ionic strength/osmolality, except high concentrations of CaCl2 and MgSO4. We observed low shear sensitivity (dependent on the flow rate) caused by the use of a peristaltic pump. For tangential flow filtration, the highest recovery of MV was at a shear rate of ~5700 s−1. Our results confirm that the application of forced degradation studies is important to identify critical process parameters for MV purification. This will be helpful during the early stages of process development, ensuring the recovery of high titers of active MV particles after purification.


Sign in / Sign up

Export Citation Format

Share Document