Lnc NEAT1/miR-29b-3p/Sp1 form a positive feedback loop and modulate bortezomib resistance in human multiple myeloma cells

2021 ◽  
Vol 891 ◽  
pp. 173752
Author(s):  
Feifei Che ◽  
Xuemei Ye ◽  
Yu Wang ◽  
Shuyue Ma ◽  
Xuemei Wang
2019 ◽  
Vol 13 (15) ◽  
pp. 1297-1306
Author(s):  
Zahra Sadat Hashemi ◽  
Saeed Khalili ◽  
Fatemeh Malaei ◽  
Maysam Mard-Soltani ◽  
Moslem Jafarisani ◽  
...  

Aim: DKK1 is reported to be produced at high levels by myeloma cells. Therefore, the applicability of DKK1 as a tumor marker for multiple myeloma (MM) diagnosis was examined. Methods: Serum samples were collected and analyzed by DKK1 concentration kit and capillary zone electrophoresis. Then, the obtained results were statically analyzed. Results: It has been determined that the 10 ng/ml of DKK1 is the optimal level for MM diagnosis. Moreover, there was an ascending linear correlation between the DKK1 concentration and γ peak. Discussion: The observed correlation could be rooted in the positive feedback loop between MM cells and the mesenchymal stem cells. In view of these results, DKK1 could be deemed as diagnostic marker for MM.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Siming Qu ◽  
Li Jin ◽  
Hanfei Huang ◽  
Jie Lin ◽  
Weiwu Gao ◽  
...  

Abstract Background Hepatitis B Virus (HBV) contributes to liver carcinogenesis via various epigenetic mechanisms. The newly defined epigenetics, epitranscriptomics regulation, has been reported to involve in multiple cancers including Hepatocellular Carcinoma (HCC). Our previous study found that HBx, HBV encodes X protein, mediated H3K4me3 modification in WDR5-dependent manner to involve in HBV infection and contribute to oncogene expression. AlkB Homolog 5 (ALKBH5), one of epitranscriptomics enzymes, has been identified to be associated with various cancers. However, whether and how ALKBH5 is dysregulated in HBV-related HCC remains unclear yet. This study aims to investigate ALKBH5 function, clinical significance and mechanism in HBV related HCC (HBV-HCC) patients derived from Chinese people. Methods The expression pattern of ALKBH5 was evaluated by RT-qPCR, Western blot, data mining and immunohistochemistry in total of 373 HBV-HCC tissues and four HCC cell lines. Cell Counting Kit 8 (CCK8) assay, Transwell and nude mouse model were performed to assess ALKBH5 function by both small interference RNAs and lentiviral particles. The regulation mechanism of ALKBH5 was determined in HBx and WDR5 knockdown cells by CHIP-qPCR. The role of ALKBH5 in HBx mRNA N6-methyladenosine (m6A) modification was further evaluated by MeRIP-qPCR and Actinomycin D inhibitor experiment in HBV-driven cells and HBx overexpression cells. Result ALKBH5 increased in tumor tissues and predicts a poor prognosis of HBV-HCC. Mechanically, the highly expressed ALKBH5 is induced by HBx-mediated H3K4me3 modification of ALKBH5 gene promoter in a WDR5-dependent manner after HBV infection. The increased ALKBH5 protein catalyzes the m6A demethylation of HBx mRNA, thus stabilizing and favoring a higher HBx expression level. Furthermore, there are positive correlations between HBx and ALKBH5 in HBV-HCC tissues, and depletion of ALKBH5 significantly inhibits HBV-driven tumor cells’ growth and migration in vitro and in vivo. Conclusions HBx-ALKBH5 may form a positive-feedback loop to involve in the HBV-induced liver carcinogenesis, and targeting the loop at ALKBH5 may provide a potential way for HBV-HCC treatment.


Sign in / Sign up

Export Citation Format

Share Document