Investigations on electrochemical properties of membrane systems in ion-exchange membrane transport processes by electrochemical impedance spectroscopy and direct current measurements

2016 ◽  
Vol 216 ◽  
pp. 110-119 ◽  
Author(s):  
Wenjuan Zhang ◽  
Panpan Wang ◽  
Jun Ma ◽  
Zhenghui Wang ◽  
Huiling Liu

Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 771
Author(s):  
Wenjuan Zhang ◽  
Wei Cheng ◽  
Ramato Ashu Tufa ◽  
Caihong Liu ◽  
David Aili ◽  
...  

Ion-exchange membranes (IEMs) represent a key component in various electrochemical energy conversion and storage systems. In this study, electrochemical impedance spectroscopy (EIS) was used to investigate the effects of structural changes of anion exchange membranes (AEMs) on the bulk membrane and interface properties as a function of solution pH. The variations in the physico/electrochemical properties, including ion exchange capacity, swelling degree, fixed charge density, zeta potentials as well as membrane and interface resistances of two commercial AEMs and cation exchange membranes (CEMs, as a control) were systematically investigated in different pH environments. Structural changes of the membrane surface were analyzed by Fourier transform infrared and X-ray photoelectron spectroscopy. Most notably, at high pH (pH > 10), the membrane (Rm) and the diffusion boundary layer resistances (Rdbl) increased for the two AEMs, whereas the electrical double layer resistance decreased simultaneously. This increase in Rm and Rdbl was mainly attributed to the deprotonation of the tertiary amino groups (-NR2H+) as a membrane functionality. Our results show that the local pH at the membrane-solution interface plays a crucial role on membrane electrochemical properties in IEM transport processes, particularly for AEMs.



2018 ◽  
Vol 42 (17) ◽  
pp. 14394-14409 ◽  
Author(s):  
S. Pugal Mani ◽  
Bhavana Rikhari ◽  
Perumal Agilan ◽  
N. Rajendran

In the present investigation, the corrosion behavior of TiN-coated 316L SS was evaluated for use in a proton-exchange membrane fuel cell using dynamic electrochemical impedance spectroscopy (DEIS).





Sign in / Sign up

Export Citation Format

Share Document