Wick-free paradigm for high-performance vapor-chamber heat spreaders

2022 ◽  
Vol 253 ◽  
pp. 115138
Author(s):  
George Damoulakis ◽  
Constantine M. Megaridis
Author(s):  
George Damoulakis ◽  
Mohamad Jafari-Gukeh ◽  
Theodore P. Koukoravas ◽  
Constantine Megaridis

Abstract The characterization "thermal diode" has been used to portray systems that spread heat very efficiently in a specific direction but obstruct it from flowing in the opposite direction. In this study, a planar vapor chamber with a wickless, wettability-patterned condenser is fabricated and tested as a thermal diode. When the chamber operates in the forward mode, heat is naturally driven away from the heat source; in the reverse mode, the system blocks heat backflow, thus working as a thermal diode. The low-profile assembly takes advantage of the phase-changing properties of water inside a closed loop comprised of a classical thin-wick evaporator opposing a wickless wettability-patterned condenser, when the chamber operates in the forward (heat-transporting) mode. The wettability patterned plate -when on the cooled side- enables spatial controlled dropwise and filmwise condensation and offers an efficient transport mechanism of the condensed medium on superhydrophilic wedge tracks by way of capillary forces. The same chamber acts as a thermal blocker when the opposing wick-covered plate is on the cool side, trapping the liquid in the pores and blocking heat flow. With this system, thermal diodicities exceeding 20 have been achieved, and are tunable by altering the wettability pattern as needed for different purposes. The present vapor chamber - thermal diode design could be well-suited for an extensive range of thermal-management applications, ranging from aerospace, spacecraft, and construction building materials, to electronics protection, electronics packaging, refrigeration, thermal control during energy harvesting, thermal isolation, etc.


2021 ◽  
Author(s):  
Zihao Yuan ◽  
Tao Zhang ◽  
Jeroen Van Duren ◽  
Ayse K. Coskun

Abstract Lab-grown diamond heat spreaders are becoming attractive solutions compared to traditional copper heat spreaders due to their high thermal conductivity, the ability to directly bond them on silicon, and allow for an ultra-thin silicon layer. Researchers have developed various thermal models and prototypes of lab-grown diamond heat spreaders to evaluate their cooling performance and heat spreading ability. The majority of existing thermal models are built using finite-element method (FEM) based simulators such as COMSOL and ANSYS. However, such commercial simulators are computationally expensive and lead to long solution times along with large memory requirements. These limitations make commercial simulators unsuitable for evaluating numerous design alternatives or runtime scenarios for real-world high-performance processors. Because of this modeling challenge, none of the existing works have evaluated the thermal behavior of lab-grown diamond heat spreaders on real-world high-performance processors running realistic application benchmarks. Recently, we have developed a parallel compact thermal simulator, PACT, that is able to carry out fast and accurate steady-state and transient thermal simulations and can be extended to support emerging integration and cooling technologies. In this paper, we use PACT to evaluate the steady-state and transient cooling performance of lab-grown diamond heat spreaders against traditional copper heat spreaders on various real-world high-performance processors (e.g., Intel i7 6950X, IBM Power9, and PicoSoC). By using PACT with architectural performance and power simulators such as Sniper and McPAT, we are able to run transient simulations with realistic benchmarks. Simulation results show that lab-grown diamond heat spreaders achieve maximum temperature and thermal gradient reductions of up to 26.73 °C and 13.75 °C when compared to traditional copper heat spreaders, respectively. The maximum steady-state and transient simulation times of PACT for the real-world high-performance chips and realistic applications used in our experiments are 259 s and 22 min, respectively.


2020 ◽  
Vol 166 ◽  
pp. 114657 ◽  
Author(s):  
Baotong Li ◽  
Xinxin Yin ◽  
Wenhao Tang ◽  
Jinhua Zhang

Author(s):  
Garrett A. Glover ◽  
Yongguo Chen ◽  
Annie Luo ◽  
Herman Chu

The current work is a survey of applied applications of passive 2-phase technologies, such as heat pipe and vapor chamber, in heat sink designs with thin base for electronic cooling. The latest improvements of the technologies and manufacturing processes allow achievable heat sink base thickness of 3 mm as compared to around 5 mm previously. The key technical challenge has been on maintaining structural integrity for adequate hollow space for the working fluid vapor in order to retain high performance while reducing the thickness of the overall vapor chamber or flattened heat pipe. Several designs of thin vapor chamber base heat sink and embedded heat pipe heat sink from different vendors are presented for a moderate power density application of a 60 W, 13.2 mm square heat source. Numerous works have been published by both academia and commercial applications in studying the fundamental science of passive 2-phase flow technologies; their performance has been compared to solid materials, like aluminum and copper. These works have established the merits of using heat pipes and vapor chambers in electronic cooling. The intent of this paper is to provide a methodical approach to help to accelerate the process in evaluating the arrays of different commercial designs of these devices in our product design cycle. In this paper, the trade-offs between the different types of technologies are discussed for parameters such as performance advantages, physical attributes, and some cost considerations. This is a bake-off evaluation of the complete heat sink solutions from the various vendors and not a fundamental research of vapor chambers and heat pipes — for that, it is best left to the vendors and universities.


2019 ◽  
Vol 6 (5) ◽  
pp. 01-18
Author(s):  
Ma Yue ◽  
Shirazy Mahmoud ◽  
Coudrain Perceval ◽  
Colonna Jean-Phulippe ◽  
Souifi Abdelkader ◽  
...  

The interest in silicon vapor chambers (SVCs) has increased in the recent years as they have been identified as efficient cooling systems for microelectronics. They present the advantage of higher thermal conductivity and smaller form factor compared to conventional heat spreaders. This work aims to investigate the potential miniaturization of these devices, preliminary to integration on the backside of mobile device chips, located as close as possible to hotspots. While detailed numerical models of vapor chamber operation are developed, an easy modeling with low computational cost is needed for an effective parametric study.  Based on the study of the operating limits, this paper shows the thinning potential of a water filled micropillar for a device operating below 10 W and identify the corresponding vapour core height, and wick thickness.


2019 ◽  
Vol 7 (6) ◽  
pp. 1-16
Author(s):  
Yue MA ◽  
M. R. S. Shirazy ◽  
Q. Struss ◽  
P. Coudrain ◽  
J.P. Colonna ◽  
...  

The interest in silicon vapor chambers (SVCs) has increased in the recent years as they have been identified as efficient cooling systems for microelectronics. They present the advantage of higher thermal conductivity and smaller form factor compared to conventional heat spreaders. This work aims to investigate the potential miniaturization of these devices, preliminary to integration on the backside of mobile device chips, located as close as possible to hotspots. While detailed numerical models of vapor chamber operation are developed, an easy modeling with low computational cost is needed for an effective parametric study.  Based on the study of the operating limits, this paper shows the thinning potential of a water filled micropillar for a device operating below 10 W and identify the corresponding vapour core height, and wick thickness.


Sign in / Sign up

Export Citation Format

Share Document