Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo

Energy ◽  
2012 ◽  
Vol 37 (1) ◽  
pp. 371-383 ◽  
Author(s):  
Y. Hirano ◽  
T. Fujita
2021 ◽  
Vol 13 (2) ◽  
pp. 762
Author(s):  
Liu Tian ◽  
Yongcai Li ◽  
Jun Lu ◽  
Jue Wang

High population density, dense high-rise buildings, and impervious pavements increase the vulnerability of cities, which aggravate the urban climate environment characterized by the urban heat island (UHI) effect. Cities in China provide unique information on the UHI phenomenon because they have experienced rapid urbanization and dramatic economic development, which have had a great influence on the climate in recent decades. This paper provides a review of recent research on the methods and impacts of UHI on building energy consumption, and the practical techniques that can be used to mitigate the adverse effects of UHI in China. The impact of UHI on building energy consumption depends largely on the local microclimate, the urban area features where the building is located, and the type and characteristics of the building. In the urban areas dominated by air conditioning, UHI could result in an approximately 10–16% increase in cooling energy consumption. Besides, the potential negative effects of UHI can be prevented from China in many ways, such as urban greening, cool material, water bodies, urban ventilation, etc. These strategies could have a substantial impact on the overall urban thermal environment if they can be used in the project design stage of urban planning and implemented on a large scale. Therefore, this study is useful to deepen the understanding of the physical mechanisms of UHI and provide practical approaches to fight the UHI for the urban planners, public health officials, and city decision-makers in China.


2017 ◽  
Vol 9 (3) ◽  
pp. 250 ◽  
Author(s):  
Weilin Liao ◽  
Xiaoping Liu ◽  
Dagang Wang ◽  
Yanling Sheng

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
P. Shahmohamadi ◽  
A. I. Che-Ani ◽  
K. N. A. Maulud ◽  
N. M. Tawil ◽  
N. A. G. Abdullah

This paper investigates the impact of anthropogenic heat on formation of urban heat island (UHI) and also determines which factors can directly affect energy use in the city. It explores literally the conceptual framework of confliction between anthropogenic heat and urban structure, which produced UHI intensity and affected energy consumption balance. It then discusses how these two factors can be affected and gives implication to the city and then focuses on whether actions should be taken for balancing adaptation and mitigation of UHI effects. It will be concluded by making the three important strategies to minimise the impact of UHI on energy consumption: landscaping, using albedo materials on external surfaces of buildings and urban areas, and promoting natural ventilation.


Author(s):  
Alberto Previati ◽  
Giovanni B. Crosta

AbstractUrban areas are major contributors to the alteration of the local atmospheric and groundwater environment. The impact of such changes on the groundwater thermal regime is documented worldwide by elevated groundwater temperature in city centers with respect to the surrounding rural areas. This study investigates the subsurface urban heat island (SUHI) in the aquifers beneath the Milan city area in northern Italy, and assesses the natural and anthropogenic controls on groundwater temperatures within the urban area by analyzing groundwater head and temperature records acquired in the 2016–2020 period. This analysis demonstrates the occurrence of a SUHI with up to 3 °C intensity and reveals a correlation between the density of building/subsurface infrastructures and the mean annual groundwater temperature. Vertical heat fluxes to the aquifer are strongly related to the depth of the groundwater and the density of surface structures and infrastructures. The heat accumulation in the subsurface is reflected by a constant groundwater warming trend between +0.1 and + 0.4 °C/year that leads to a gain of 25 MJ/m2 of thermal energy per year in the shallow aquifer inside the SUHI area. Future monitoring of groundwater temperatures, combined with numerical modeling of coupled groundwater flow and heat transport, will be essential to reveal what this trend is controlled by and to make predictions on the lateral and vertical extent of the groundwater SUHI in the study area.


2021 ◽  
pp. 117802
Author(s):  
Ahmed M. El Kenawy ◽  
Juan I. Lopez-Moreno ◽  
Matthew F. McCabe ◽  
Fernando Domínguez-Castro ◽  
Dhais Peña-Angulo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document