A multi-criteria approach for selection of wave energy converter/location

Energy ◽  
2020 ◽  
Vol 204 ◽  
pp. 117924 ◽  
Author(s):  
Bahareh Kamranzad ◽  
Sanaz Hadadpour
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Maycon Da Silveira Paiva ◽  
Leonardo Da Silva Silveira ◽  
Liércio André Isoldi ◽  
Bianca Neves Machado

The present study aims to analyze the state of the art of scientific studies about the Overtopping device used to convert sea wave energy into electrical energy, by means the Bibliometric Methodology. The development of this study took place through the selection of articles from conference proceedings, as well as national and international journals. The Bibliometric methodology consists of a statistical tool that allows quantifying the measurement of production indexes. Using selected keywords, it was conducted a survey of studies in the online databases of Science Direct, SciELO and Google Scholar. The works found then went through a filtering process, in order to limit the bibliometric study only to studies about Overtopping devices as sea wave energy converter. Finally, the investigation of these selected articles was carried out under the optics of production and authorship study, content study and study of bibliographic references. Where it was identified growth in publications related to the topic, methodologies used and, among other indicators, the authors most cited in the analyzed articles. The predominant keywords used were “Wave Energy Converter” and “Overtopping”. It was noted that Brazilian universities are leaders in the productivity, presenting more than 36% of the scientific production regarding Overtopping WECs.


2021 ◽  
Vol 170 ◽  
pp. 1020-1039
Author(s):  
S.D.G.S.P. Gunawardane ◽  
G.A.C.T. Bandara ◽  
Young-Ho Lee

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 204
Author(s):  
Shao-En Chen ◽  
Ray-Yeng Yang ◽  
Guang-Kai Wu ◽  
Chia-Che Wu

In this paper, a piezoelectric wave-energy converter (PWEC), consisting of a buoy, a frequency up-conversion mechanism, and a piezoelectric power-generator component, is developed. The frequency up-conversion mechanism consists of a gear train and geared-linkage mechanism, which converted lower frequencies of wave motion into higher frequencies of mechanical motion. The slider had a six-period displacement compared to the wave motion and was used to excite the piezoelectric power-generation component. Therefore, the operating frequency of the piezoelectric power-generation component was six times the frequency of the wave motion. The developed, flexible piezoelectric composite films of the generator component were used to generate electrical voltage. The piezoelectric film was composed of a copper/nickel foil as the substrate, lead–zirconium–titanium (PZT) material as the piezoelectric layer, and silver material as an upper-electrode layer. The sol-gel process was used to fabricate the PZT layer. The developed PWEC was tested in the wave flume at the Tainan Hydraulics Laboratory, Taiwan (THL). The maximum height and the minimum period were set to 100 mm and 1 s, respectively. The maximum voltage of the measured value was 2.8 V. The root-mean-square (RMS) voltage was 824 mV, which was measured through connection to an external 495 kΩ resistive load. The average electric power was 1.37 μW.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1731
Author(s):  
Dan Montoya ◽  
Elisabetta Tedeschi ◽  
Luca Castellini ◽  
Tiago Martins

Wave energy is nowadays one of the most promising renewable energy sources; however, wave energy technology has not reached the fully-commercial stage, yet. One key aspect to achieve this goal is to identify an effective control strategy for each selected Wave Energy Converter (WEC), in order to extract the maximum energy from the waves, while respecting the physical constraints of the device. Model Predictive Control (MPC) can inherently satisfy these requirements. Generally, MPC is formulated as a quadratic programming problem with linear constraints (e.g., on position, speed and Power Take-Off (PTO) force). Since, in the most general case, this control technique requires bidirectional power flow between the PTO system and the grid, it has similar characteristics as reactive control. This means that, under some operating conditions, the energy losses may be equivalent, or even larger, than the energy yielded. As many WECs are designed to only allow unidirectional power flow, it is necessary to set nonlinear constraints. This makes the optimization problem significantly more expensive in terms of computational time. This work proposes two MPC control strategies applied to a two-body point absorber that address this issue from two different perspectives: (a) adapting the MPC formulation to passive loading strategy; and (b) adapting linear constraints in the MPC in order to only allow an unidirectional power flow. The results show that the two alternative proposals have similar performance in terms of computational time compared to the regular MPC and obtain considerably more power than the linear passive control, thus proving to be a good option for unidirectional PTO systems.


Sign in / Sign up

Export Citation Format

Share Document