Transient CFD simulation of charging hot water tank

Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 122241
Author(s):  
Piotr Dzierwa ◽  
Jan Taler ◽  
Patryk Peret ◽  
Dawid Taler ◽  
Marcin Trojan
Keyword(s):  
2010 ◽  
Vol 129-131 ◽  
pp. 602-606
Author(s):  
Zhi Jun Zhang ◽  
Shi Wei Zhang ◽  
Cheng Hai Xu

The 3D physical model with two different structure of the electrical water heater was built. The performance of water heater was studied by computer fluid dynamics simulation (CFD). The heater performance is characterized the discharge efficiency, extraction efficiency and fraction of heat recoverable. It was 73.7%, 45% and 49.8% respectively with conventional structure, and it was 81.1%, 54.1% and 59.6% respectively of improved structure with discharge rate was 5L/min when all initial hot water temperature was 90°C. The temperature distribution of different discharged stage was also disclosure. The water inner the water tank of improved structure has the better thermal stratification than traditional structure. It was also agreed with the water heat performance.


2010 ◽  
Vol 29-32 ◽  
pp. 1701-1705
Author(s):  
De Xi Wang ◽  
Zhi Jun Zhang

The 3D physical model of the electrical water heater was built. The mathematical model of hot flow was resolved by computer fluid dynamics simulation (CFD). The effects of the rate of water draw on the heater performance have been investigated. The heater performance is characterized the discharge efficiency, extraction efficiency and fraction of heat recoverable. It was 85.9%, 66.0% and 70.9% respectively, and it was 74.0%, 27.3% and 39.9% respectively with discharge rate was 10L/min when all initial hot water temperature was 70°C. The water inner the water tank of draw rate 5L/min was well thermal stratification. It was also expatiated by the distribution temperature of CFD simulation.


Author(s):  
A. Castell ◽  
C. Sole´ ◽  
M. Medrano ◽  
M. Nogue´s ◽  
L. F. Cabeza

Most of the storage systems available on the market use water as storage medium. Enhancing the storage performance is necessary to increase the performance of most systems. The stratification phenomenon is employed to improve the efficiency of storage tanks. Heat at an intermediate temperature, not high enough to heat up the top layer, can still be used to heat the lower, colder layers. There are a lot of parameters to study the stratification in a water tank such as the Mix Number and the Richardson Number among others. The idea studied here was to use these stratification parameters to compare two tanks with the same dimensions during charging and discharging processes. One of them is a traditional water tank and the other is a PCM-water (a water tank with a Phase Change Material). A PCM is good because it has high energy density if there is a small temperature change, since then the latent heat is much larger than the sensible heat. On the other hand, the temperature change in the top layer of a hot water store with stratification is usually small as it is held as close as possible at or above the temperature for usage. In the system studied the Phase Change Material is placed at the top of the tank, therefore the advantages of the stratification still remain. The aim of this work is to demonstrate that the use of PCM in the upper part of a water tank holds or improves the benefit of the stratification phenomenon.


1987 ◽  
Vol 8 (9) ◽  
pp. 357-363 ◽  
Author(s):  
Richard M. Vickers ◽  
Victor L. Yu ◽  
S. Sue Hanna ◽  
Paul Muraca ◽  
Warren Diven ◽  
...  

AbstractWe conducted a prospective environmental study for Legionella pneumophila in 15 hospitals in Pennsylvania. Hot water tanks, cold water sites, faucets, and show-erheads were surveyed four times over a one-year period. Sixty percent (9/15) of hospitals surveyed were contaminated with L pneumophila. Although contamination could not be linked to a specific municipal water supplier, most of the contaminated supplies came from rivers. Parameters found to be significantly associated with contamination included elevated hot water temperature, vertical configuration of the hot water tank, older tanks, and elevated calcium and magnesium concentrations of the water (P < 0.05). This study suggests that L pneumophila contamination could be predicted based on design of the distribution system, as well as physicochemical characteristics of the water.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4842 ◽  
Author(s):  
Ryszard Zwierzchowski ◽  
Marcin Wołowicz

The paper contains a simplified energy and exergy analysis of pumps and pipelines system integrated with Thermal Energy Storage (TES). The analysis was performed for a combined heat and power plant (CHP) supplying heat to the District Heating System (DHS). The energy and exergy efficiency for the Block Part of the Siekierki CHP Plant in Warsaw was estimated. CHP Plant Siekierki is the largest CHP plant in Poland and the second largest in Europe. The energy and exergy analysis was executed for the three different values of ambient temperature. It is according to operation of the plant in different seasons: winter season (the lowest ambient temperature Tex = −20 °C, i.e., design point conditions), the intermediate season (average ambient temperature Tex = 1 °C), and summer (average ambient temperature Tex = 15 °C). The presented results of the analysis make it possible to identify the places of the greatest exergy destruction in the pumps and pipelines system with TES, and thus give the opportunity to take necessary improvement actions. Detailed results of the energy-exergy analysis show that both the energy consumption and the rate of exergy destruction in relation to the operation of the pumps and pipelines system of the CHP plant with TES for the tank charging and discharging processes are low.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 4039
Author(s):  
Dawid Taler ◽  
Tomasz Sobota ◽  
Magdalena Jaremkiewicz ◽  
Jan Taler

This paper presents the medium temperature monitoring system based on digital proportional–integral–derivative (PID) control. For industrial thermometers with a complex structure used for measuring the temperature of the fluid under high pressure, the accuracy of the first-order model is inadequate. A second-order differential equation was applied to describe a dynamic response of a temperature sensor placed in a heavy thermowell (industrial thermometer). The quality of the water temperature control system in the tank was assessed when measuring the water temperature with a jacketed thermocouple and a thermometer in an industrial casing. A thermometer of a new design with a small time constant was also used to measure temperature. The quality of water temperature control in the hot water storage tank was evaluated using a classic industrial thermometer and a new design thermometer. In both cases, there was a K-type sheathed thermocouple inside the thermowell. Reductions in the time constant of the new thermometer are achieved by means of a steel casing with a small diameter hole inside which the thermocouple is precisely fitted. The time constants of the thermometers were determined experimentally with a jump in water temperature. A digital controller was designed to maintain the preset temperature in an electrically heated hot water tank. The function of the regulator was to adjust the power of the electrical heater to maintain a constant temperature of the liquid in the tank.


Author(s):  
Yusong Cao ◽  
Fuwei Zhang ◽  
Tae-Hwan Joung ◽  
Anders Ostman ◽  
Trygve Kristiansen

This paper presents a preliminary assessment of the computational accuracy and efficiency of three different prediction methods for the water motion inside the moonpool of a rectangular box with forced vertical motion in a water tank. The first method is a linear solution method based on the linear wave diffraction/radiation theory (WAMIT). The second one is a method based on a CFD simulation (STAR-CCM+), the third method is a hybrid method combining a potential flow solver and a viscous flow solver (PVC3D). The accuracy of each method is assessed by comparing the prediction with the physical test data. The computational efficiency (complexity of setting up the computation and the computation speed) of the methods is discussed.


2019 ◽  
Vol 158 ◽  
pp. 5034-5040
Author(s):  
Di Qin ◽  
Zhun (Jerry) Yu ◽  
Tingting Yang ◽  
Shuishen Li ◽  
Guoqiang Zhang

Sign in / Sign up

Export Citation Format

Share Document