Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants

Energy ◽  
2021 ◽  
pp. 122567
Author(s):  
Haiquan Yu ◽  
Jianxin Zhou ◽  
Fengqi Si ◽  
Lars O. Nord
2017 ◽  
Vol 143 (5) ◽  
pp. 04017025
Author(s):  
Zhongyuan Huang ◽  
Jin Li ◽  
Chaowen Jing ◽  
Hongguang An ◽  
Yiying Tong ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
A. M. Elaiw ◽  
X. Xia ◽  
A. M. Shehata

Combined heat and power dynamic economic dispatch (CHPDED) plays a key role in economic operation of power systems. CHPDED determines the optimal heat and power schedule of committed generating units by minimizing the fuel cost under ramp rate constraints and other constraints. Due to complex characteristics, heuristic and evolutionary based optimization approaches have became effective tools to solve the CHPDED problem. This paper proposes hybrid differential evolution (DE) and sequential quadratic programming (SQP) to solve the CHPDED problem with nonsmooth and nonconvex cost function due to valve point effects. DE is used as a global optimizer and SQP is used as a fine tuning to determine the optimal solution at the final. The proposed hybrid DE-SQP method has been tested and compared to demonstrate its effectiveness.


Sign in / Sign up

Export Citation Format

Share Document