Screening analysis and unconstrained optimization of a small-scale vertical axis wind turbine

Energy ◽  
2022 ◽  
Vol 240 ◽  
pp. 122782
Author(s):  
Pedro Francisco Silva Trentin ◽  
Pedro Henrique Barsanaor de Barros Martinez ◽  
Gabriel Bertacco dos Santos ◽  
Elóy Esteves Gasparin ◽  
Leandro Oliveira Salviano
2018 ◽  
Vol 42 (4) ◽  
pp. 404-415
Author(s):  
H. Abu-Thuraia ◽  
C. Aygun ◽  
M. Paraschivoiu ◽  
M.A. Allard

Advances in wind power and tidal power have matured considerably to offer clean and sustainable energy alternatives. Nevertheless, distributed small-scale energy production from wind in urban areas has been disappointing because of very low efficiencies of the turbines. A novel wind turbine design — a seven-bladed Savonius vertical-axis wind turbine (VAWT) that is horizontally oriented inside a diffuser shroud and mounted on top of a building — has been shown to overcome the drawback of low efficiency. The objective this study was to analyze the performance of this novel wind turbine design for different wind directions and for different guide vanes placed at the entrance of the diffuser shroud. The flow field over the turbine and guide vanes was analyzed using computational fluid dynamics (CFD) on a 3D grid for multiple tip-speed ratios (TSRs). Four wind directions and three guide-vane angles were analyzed. The wind-direction analysis indicates that the power coefficient decreases to about half when the wind is oriented at 45° to the main axis of the turbine. The analysis of the guide vanes indicates a maximum power coefficient of 0.33 at a vane angle of 55°.


2014 ◽  
Vol 22 (4) ◽  
pp. 423-430 ◽  
Author(s):  
Yang Zhong-Jia ◽  
Gu Yi-Zhuo ◽  
Li Min ◽  
Li Yan-Xia ◽  
Lu Jie ◽  
...  

Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1465 ◽  
Author(s):  
Andrés Meana-Fernández ◽  
Jesús Manuel Fernández Oro ◽  
Katia María Argüelles Díaz ◽  
Mónica Galdo-Vega ◽  
Sandra Velarde-Suárez

Wind tunnel testing of small-scale models is one of the most useful techniques to predict the performance of real-scale applications. In this work, the aerodynamic design and the construction of a small-scale model of a straight-bladed vertical axis wind turbine for wind tunnel testing has been performed. Using a double multiple streamtube model (DMST), different solidity values for the turbine and different airfoil geometries were compared to select the final design. Once an optimal design was selected, a numerical simulation using Computational Fluid Dynamics (CFD) was performed in order to obtain a more precise description of the flow field as well as the performance of the model. Future work will comprise the characterization of the model and the comparison of the experimental and numerical results.


Sign in / Sign up

Export Citation Format

Share Document