Statistical characteristics of fracture surfaces in high-strength steel drop weight tear test specimens

2013 ◽  
Vol 112-113 ◽  
pp. 1-13 ◽  
Author(s):  
B. Strnadel ◽  
P. Ferfecki ◽  
P. Židlík
Author(s):  
Pavel Zˇidli´k ◽  
Petr Ferfecki ◽  
Bohumi´r Strnadel

Drop weight tear test (DWTT) is one of the standard methods for evaluation of the ductility of large-dimensional structural components, such as pipelines used for gas and/or oil transportation. In general, the pipelines are even used in places with temperatures close to −40 °C, and in such environments, it is necessary to guarantee the resistance of the material used for pipeline against the initiation of unstable fracture. Currently, the percentage portion of the ductile fracture of the DWTT specimen is determined by an expert evaluator. The objective of this paper is to introduce new procedures working on the principle of deterministic, statistical and fractal description of the fracture surface. For the proposed computational procedures, the fracture surface of the test specimen is scanned at the macroscopic level using the 3D-Cam scanner. The newly investigated procedures show highly sensitive to the determination of the percentage portion of the ductile fracture on the tested DWTT specimens. The developed procedures to assess the fracture surfaces of the DWTT specimens contributes to making the results of this test more correct, objective and also increases the reliability and safety of the manufactured pipelines.


2012 ◽  
Vol 482-484 ◽  
pp. 1622-1627
Author(s):  
Ping Wang ◽  
Wei Li ◽  
Dong Ming Wang

Based on the observation of fracture surfaces for a low-alloy high strength steel under rotating bending in very high cycle regime, a newly defined method about inspection plane under rotating bending was developed in this paper. By using the statistics of extreme values (SEV) method, the maximum sizes of inclusion and FGA corresponding to the control volume of specimen are evaluated to be about 41.38 μm and 58.51 μm on the basis of this newly defined inspection plane, and the corresponding values of fatigue limit are evaluated to be 690 MPa and 654 MPa, respectively. It should be noted that fatigue design based on former involves a certain amount of risk in very high cycle regime.


Author(s):  
Takuya Hara ◽  
Taishi Fujishiro

The demand for natural gas using LNG and pipelines to supply the world gas markets is increasing. The use of high-strength line pipe provides a reduction in the cost of gas transmission pipelines by enabling high-pressure transmission of large volumes of gas. Under the large demand of high-strength line pipe, crack arrestability of running ductile fracture behavior is one of the most important properties. The CVN (Charpy V-notched) test and the DWTT (Drop Weight Tear Test) are major test methods to evaluate the crack arrestability of running ductile fractures. Separation, which is defined as a fracture parallel to the rolling plane, can be characteristic of the fracture in both full-scale burst tests and DWTTs. It is reported that separations deteriorate the crack arrestability of running ductile fracture, and also that small amounts of separation do not affect the running ductile fracture resistance. This paper describes the effect of separation on ductile propagation behavior. We utilized a high-speed camera to investigate the CTOA (Crack Tip Opening Angle) during the DWTT. We show that some separations deteriorate ductile crack propagation resistance and that some separations do not affect the running ductile fracture resistance.


Author(s):  
Tetsuya Tagawa ◽  
Taishi Fujishiro ◽  
Toshihiko Amano ◽  
Shuji Aihara ◽  
Satoshi Igi

The drop-weight tear test (DWTT) has been widely used to evaluate the resistance of linepipe steels against long brittle fracture propagation. However, there is an ambiguity in its evaluation if the inverse fracture appears (100% shear area prior to cleavage fracture from the notch) on the DWTT fracture surfaces. Although cause of the inverse fracture is not fully understood, compressive pre-straining near the impact hammer has been discussed as a possible cause. In the present work, DWTTs for X65, X70 and X80 were performed. In addition to conventional DWTT specimen with a pressed notch (PN), PN specimen with a back slot and specimens with a chevron notch (CN) or a static pre-cracked (SPC) were examined. The fracture appearances were compared in the different strength and in the different initial notch type. The frequency of the inverse fracture appeared in these DWTTs were different in each material and each specimen type, but there were no cases free from the inverse fracture. The inverse fracture was investigated by fractography and the hardness profiles along the under layer of the fracture surfaces. Also, the strain histories during impact in DWTTs were measured by the digital image correlation technique based on the high-speed camera images. The DWTT specimen purpose is to evaluate the brittle crack arrestability of the material in a pressurized linepipe. The DWTT results should be examined with a manner of a running brittle crack in a pressurized linepipe. A large scale brittle crack arrest test, so called temperature gradient ESSO test was also performed for X65 mother plate. The shear area fraction measured in DWTT fracture appearance was compared with the local shear lip thickness fraction in ESSO test. The count of the inverse fracture was discussed in comparison with the long brittle crack arrest behavior in ESSO test.


Sign in / Sign up

Export Citation Format

Share Document