Performance-based seismic design and assessment of rocking timber buildings equipped with inerters

2021 ◽  
Vol 248 ◽  
pp. 113164
Author(s):  
R. Thiers-Moggia ◽  
C. Málaga-Chuquitaype
2010 ◽  
Vol 163-167 ◽  
pp. 1757-1761
Author(s):  
Yong Le Qi ◽  
Xiao Lei Han ◽  
Xue Ping Peng ◽  
Yu Zhou ◽  
Sheng Yi Lin

Various analytical approaches to performance-based seismic design are in development. Based on the current Chinese seismic codes,elastic capacity calculation under frequent earthquake and ductile details of seismic design shall be performed for whether seismic design of new buildings or seismic evaluation of existing buildings to satisfy the seismic fortification criterion “no damage under frequent earthquake, repairable under fortification earthquake, no collapse under severe earthquake”. However, for some special buildings which dissatisfy with the requirements of current building codes, elastic capacity calculation under frequent earthquake is obviously not enough. In this paper, the advanced performance-based seismic theory is introduced to solve the problems of seismic evaluation and strengthening for existing reinforced concrete structures, in which story drift ratio and deformation of components are used as performance targets. By combining the features of Chinese seismic codes, a set of performance-based seismic design method is established for reinforced concrete structures. Different calculation methods relevant to different seismic fortification criterions are adopted in the proposed method, which solve the problems of seismic evaluation for reinforced concrete structures.


2021 ◽  
pp. 875529302098196
Author(s):  
Siamak Sattar ◽  
Anne Hulsey ◽  
Garrett Hagen ◽  
Farzad Naeim ◽  
Steven McCabe

Performance-based seismic design (PBSD) has been recognized as a framework for designing new buildings in the United States in recent years. Various guidelines and standards have been developed to codify and document the implementation of PBSD, including “ Seismic Evaluation and Retrofit of Existing Buildings” (ASCE 41-17), the Tall Buildings Initiative’s Guidelines for Performance-Based Seismic Design of Tall Buildings (TBI Guidelines), and the Los Angeles Tall Buildings Structural Design Council’s An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region (LATBSDC Procedure). The main goal of these documents is to regularize the implementation of PBSD for practicing engineers. These documents were developed independently with experts from varying backgrounds and organizations and consequently have differences in several degrees from basic intent to the details of the implementation. As the main objective of PBSD is to ensure a specified building performance, these documents would be expected to provide similar recommendations for achieving a given performance objective for new buildings. This article provides a detailed comparison among each document’s implementation of PBSD for reinforced concrete buildings, with the goal of highlighting the differences among these documents and identifying provisions in which the designed building may achieve varied performance depending on the chosen standard/guideline. This comparison can help committees developing these documents to be aware of their differences, investigate the sources of their divergence, and bring these documents closer to common ground in future cycles.


2021 ◽  
Vol 237 ◽  
pp. 112043
Author(s):  
Jianian Wen ◽  
Qiang Han ◽  
Yazhou Xie ◽  
Xiuli Du ◽  
Jian Zhang

2021 ◽  
Vol 91 (2) ◽  
pp. 56-63
Author(s):  
Atila Zekioglu ◽  
Aysegul Gogus ◽  
Serdar Binzet ◽  
Kermin Chok

2012 ◽  
Vol 28 (4) ◽  
pp. 1549-1568 ◽  
Author(s):  
Shun-Hao Ni ◽  
De-Yi Zhang ◽  
Wei-Chau Xie ◽  
Mahesh D. Pandey

Uniform hazard spectra (UHS) have been used as design earthquakes in several design codes. However, as the results from scalar probabilistic seismic hazard analysis (PSHA), UHS do not provide knowledge about the simultaneous occurrence of spectral accelerations at multiple vibration periods. The concept of a single “design earthquake” is then lost on a UHS. In this study, a vector-valued PSHA combined with scalar PSHA is applied to establish an alternative design spectrum, named vector-valued UHS (VUHS). Vector-valued seismic hazard deaggregation (SHD) is also performed to determine the design earthquake in terms of magnitude, distance, and occurrence rate for the VUHS. The proposed VUHS preserves the essence of the UHS and can also be interpreted as a single design earthquake. To simplify the procedure for generating the VUHS, so that they can be easily incorporated into performance-based seismic design, an approximate method is also developed.


2010 ◽  
Vol 10 (01) ◽  
pp. 111-126 ◽  
Author(s):  
S. W. LIU ◽  
Y. P. LIU ◽  
S. L. CHAN

Nonlinear static (pushover) analysis is an effective and simple tool for evaluating the seismic response of structures and offers an attractive choice for the performance-based design. As such, it has generally been used in modern design due to its practicality. However, the nonlinear plastic design method consumes extensive computational effort for practical structures under numerous load cases. Thus, an efficient element capturing the nonlinear behavior of a beam-column will be useful. In this paper, the authors propose a practical pushover analysis procedure using a single element per member for seismic design. As an improvement to previous research works, both P – Δ and P – δ effects as well as initial imperfections in global and member levels are considered. Therefore, the section capacity check without the assumption of effective length is adequate for present design and the conventional individual element design is avoided. The uncertainty of the buckling effects and effective length method can be eliminated and so a more economical design can be achieved. Two benchmark steel frames of three-storey and nine-storey in FEMA 440 were analyzed to illustrate the validity of the proposed method.


Author(s):  
Mark Aschheim ◽  
Enrique Hernández ◽  
Dimitrios Vamvatsikos

Sign in / Sign up

Export Citation Format

Share Document