Information fusion to automatically classify post-event building damage state

2022 ◽  
Vol 253 ◽  
pp. 113765
Author(s):  
Xiaoyu Liu ◽  
Lissette Iturburu ◽  
Shirley J. Dyke ◽  
Ali Lenjani ◽  
Julio Ramirez ◽  
...  
Author(s):  
Stephanie F. Pilkington ◽  
Hussam Mahmoud ◽  
John W. van de Lindt ◽  
Maria Koliou ◽  
Steve Smith

Abstract The direct physical loss from a tornado is one possible factor in considering resilience goals for a community. Estimating such loss has historically been achieved either through analysis of empirical data from historical events meant to then match future hypothetical events or through a cost analysis based on a building's damage state. These approaches provide a solid baseline for estimating loss from wind events; however, gathering data from historical events may assume all locations are the same, while analyses based solely on the building damage state may not include a building's contents. This study builds on work previously established in determining loss from building damage state fragilities, by including a loss to the building's interior (including contents) based on Federal Emergency Management Agency's (FEMA's) HAZUS equations. The approach laid out in this paper is then validated, showing what is deemed an acceptable level of accuracy, using the May 22, 2011 Joplin tornado that devastated the local community. Once validated, the same tornado path is relocated in different directions, ultimately crossing most of city of Joplin in four additional hypothetical scenarios. The results of both hindcasting the 2011 Joplin tornado and its hypothetical track variations show commercial (nonresidential) type buildings as key in contributing to the direct physical loss of a wind event. Ultimately, this provides decision makers with a point of consideration when evaluating their community's resilience goals.


Author(s):  
S. Akkar

AbstractThis paper presents a novel approach to develop content fragility conditioned on building damage for contents used in residential buildings in Turkey. The approach combines the building damage state probabilities with the content damage probabilities conditioned on building damage states to develop the content fragilities. The paper first presents the procedure and then addresses the epistemic uncertainty in building and content fragilities to show their effects on the content vulnerability. The approach also accounts for the expert opinion differences in the content replacement cost ratios (consequence functions) as part of the epistemic uncertainty. Monte Carlo sampling is used to consider the epistemic uncertainty in each model component contributing to the content vulnerability. A sample case study is presented at the end of the paper to show the implementation of the developed content fragilities by calculating the average annual loss ratio (AALR) distribution of residential content loss over the mainland Turkey.


2021 ◽  
Vol 15 (1) ◽  
pp. 117-134
Author(s):  
Maria Zucconi ◽  
Rachele Ferlito ◽  
Luigi Sorrentino

Background: Seismic risk mitigation has become a crucial issue due to the great number of casualties and large economic losses registered after recent earthquakes. In particular, unreinforced masonry constructions built before modern seismic codes, common in Italy and in other seismic-prone areas, are characterized by great vulnerability. In order to implement mitigation policies, analytical tools are necessary to generate scenario simulations. Methods: Therefore, data collected during inspections after the 2009 L’Aquila, Italy earthquake are used to derive novel fragility functions. Compared to previous studies, data are interpreted accounting for the presence of buildings not inspected due to those being undamaged. An innovative building damage state is proposed and is based on the response of different structural elements recorded in the survey form: vertical structures, horizontal structures, stairs, roof, and partition walls. In the suggested formulation, the combination of their performance is weighted based on typical reparation techniques and on the relative size of the structural elements, estimated from a database of complete geometrical surveys developed specifically for this study. Moreover, the proposed building damage state estimates earthquake-related damage by removing the preexisting damage reported in the inspection form. Results: Lognormal fragility curves, in terms of building damage state grade as a function of typological classes and peak ground acceleration, derived maximizing their likelihood and their merits compared with previous studies are highlighted. Conclusion: The correction of the database to account for uninspected buildings delivers curves that are less “stiff” and reach the median for lower peak ground acceleration values. The building feature that influences most the fragility is the masonry quality.


2020 ◽  
Vol 6 (3) ◽  
pp. 225
Author(s):  
Yunalia Muntafi ◽  
Nobuoto Nojima ◽  
Atika Ulfah Jamal

Indonesia is a country located in an earthquake-prone region, and is characterized by significantly increased peak ground acceleration value. The seismic hazard map of Indonesia stated in SNI 1726-2012 and the current statistics published by PUSGEN in 2017 emphasized on the significance of assessing building damage probabilities, especially for essential structures in Yogyakarta. However, immediate action is required to handle response and recovery operations during and after a disaster. The aim of this study, therefore, is to ascertain the vulnerability and damage probability of hospital buildings in Yogyakarta by employing the 2006 earthquake scenario, where reports showed the destruction of over 156,000 houses and other structures. Furthermore, a Hazard-US (HAZUS) method was used for structural analysis, while a ground motion prediction equation was adopted to produce the building response spectra, following the characteristics of the earthquake incidence. The vital step in this assessment involves building type classification and identification of seismic design levels. However, the damage tendency of buildings is determined using the peak building response, which ensures the generation of capacity curves. The most significant findings on building damage probability value were less than 15% in each damage state (slight, moderate, extensive, complete). In addition, the optimum value was achieved at the minimum level of damage (minor), while the least values were recorded at the highest damage level (complete).


2013 ◽  
Vol 13 (2) ◽  
Author(s):  
Wisyanto Wisyanto

Tsunami which was generated by the 2004 Aceh eartquake has beenhaunting our life. The building damage due to the tsunami could be seenthroughout Meulaboh Coastal Area. Appearing of the physical loss wasclose to our fault. It was caused by the use dan plan of the land withoutconsidering a tsunami disaster threat. Learning from that event, we haveconducted a research on the pattern of damage that caused by the 2004tsunami. Based on the analysis of tsunami hazard intensity and thepattern of building damage, it has been made a landuse planning whichbased on tsunami mitigation for Meulaboh. Tsunami mitigation-based ofMeulaboh landuse planning was made by intergrating some aspects, suchas tsunami protection using pandanus greenbelt, embankment along withhigh plants and also arranging the direction of roads and setting of building forming a rhombus-shaped. The rhombus-shaped of setting of the road and building would reduce the impact of tsunamic wave. It is expected that these all comprehensive landuse planning will minimize potential losses in the future .


Sign in / Sign up

Export Citation Format

Share Document