Evaluation of thermal/acoustic performance to confirm the possibility of coffee waste in building materials in using bio-based microencapsulated PCM

2022 ◽  
Vol 294 ◽  
pp. 118616
Author(s):  
Ji Yong Choi ◽  
Beom Yeol Yun ◽  
Young Uk Kim ◽  
Yujin Kang ◽  
Sung Chan Lee ◽  
...  
Proceedings ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 22
Author(s):  
Bouzit ◽  
Taha

The building sector is one of the largest energy consumers in the world, prompting scientific researchers to find solutions to the problem. The choice of appropriate building materials presents a considerable challenge for improving the thermal comfort of buildings. In this scenario, plaster-based insulating materials have more and more interests and new applications, such as insulating coatings developing the building envelope. Several works are being done to improve energy efficiency in the building sector through the study of building materials with insulation quality and energy savings. In this work, new composite materials, plaster-gypsum with mineral additives are produced and evaluated experimentally to obtain low-cost materials with improved thermo-physical and acoustic properties. The resulting composites are intended for use in building walls. Plaster-gypsum is presented as a high-performance thermal material, and mineral additives are of great importance because of their nature and are environmentally friendly. Measurements of thermal properties are carried and measurements of acoustic properties. The results show that it is possible to improve the thermal and acoustic performance of building material by using plaster as a base material and by incorporating thermal insulators. The thermal conductivity of plaster alone is greater than that of plaster with mineral additives, offer interesting thermal and acoustic performance. By varying the additives, the thermal conductivity changes. Finally, comparing the results, plaster with mineral additives is considered the best building material in this study


Author(s):  
Lukáš Fiala ◽  
Petr Konrád ◽  
Robert Černý

In Central Europe, brick blocks with incorporated system of voids ensuring good thermal properties are widely used in the building industry. In the present, increasingly higher acoustic load gains on importance especially in the surroundings of places with high traffic load, places close to the airports or in urban areas. This fact should be taken into consideration in the design of constructions in order to ensure their good acoustic performance. The very first step of such design lies in the experimental determination of acoustic properties of the reference construction elements which are, if necessary, subsequently optimized by adjustment of the voids volume and geometry or filling of the voids by various bulk fillers ensuring a higher level of scattering of the propagating acoustic signal. In this paper, steel prism and brick block were subjected to measurements by accelerometers in the frequency range 1 – 10 kHz in order to compare acoustic behavior of materials with a significantly different structure. Finally, frequency-dependent displacements in accelerometers position,


Buildings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 232 ◽  
Author(s):  
Anna Stepien ◽  
Magdalena Leśniak ◽  
Maciej SITARZ

Far-reaching technological progress, manufacturing, and rapidly advancing globalization dictate new conditions for the development and changes in the construction industry. Valorization of by-products and the use of secondary materials in the production of building materials have attracted a lot of attention. Silicate materials were assessed on the basis of their compressive property. An orthogonal compositional plan type 3k (with k = 2), that is, a full two-factor experiment was applied in order to carry out the compressive strength and bulk density tests. Glass sand was added to the silicate mass as a modification. The results show that the compressive strength was higher than that of traditional bricks. Scanning electron microscopy coupled with energy dispersive spectrometry SEM/EDS was used to study the microstructure, whereas the XRD analysis was applied to examine the structures. Laboratory tests were performed on samples with dimensions of 50 × 50 × 50 mm. The results show the bulk density increase to the value of 1.75 kg/dm3, which increases the acoustic performance of the new products. The results of the modifications also indicate changes in the structure of the new bricks. The reference sample contained α-quartz, zeolite, tobermorite 9A, and calcium aluminum silicate (Ca2Al4Si12O32), whereas the samples modified with glass sand, the presence of phases such as α-cristobalite, natrolite, tobermorite 11A, gyrolite, and analcite was recorded.


2021 ◽  
Vol 13 (19) ◽  
pp. 10712 ◽  
Author(s):  
Mugahed Amran ◽  
Roman Fediuk ◽  
Gunasekaran Murali ◽  
Nikolai Vatin ◽  
Amin Al-Fakih

Noise is continuously treated as an annoyance to humans and indeed commotion contamination shows up within the environment, causing inconvenience. This is likewise interesting to the engineering tactic that inclines to develop this noise proliferation. The basics of the sound-retaining proliferation, sound-absorbing properties, and its variables were rarely considered by previous researchers. Thus, the acoustic performance and sound insulation of constructions have gained significance over the last five decades due to the trend for accommodating inner-city flat and multi-story residential building condominiums. Due to this dilemma, the proliferation of high-driven entertaining schemes has engaged extraordinary demands on building for its acoustic performance. Yet, construction industries worldwide have started to mainly use sound-absorbing concrete to reduce the frequency of sounds in opened-and-closed areas and increase sound insulation. As reported, the concrete acoustic properties generally rely on its density, exhibiting that the lighter ones, such as cellular concrete, will absorb more sound than high-density concretes. However, this paper has an objective to afford a wide-ranging review of sound-absorbing acoustic concretes, including the measurement techniques and insulation characteristics of building materials and the sound absorption properties of construction materials. It is also intended to extensively review to provide insights into the possible use of a typical sound-absorbing acoustic concrete in today’s building industry to enhance housing occupants’ efficiency, comfort, well-being, and safety.


Author(s):  
Said Bouzit ◽  
Francesca Merli ◽  
Mohammed Sonebi ◽  
Sofiane Amziane ◽  
Cinzia Buratti ◽  
...  

The building sector is one of the biggest consumers of energy in the world and it is pushing the scientific community to find various alternative solutions to solve the problem of thermal insulation of buildings. Therefore, the selection of appropriate building materials is a major challenge for improving the thermal comfort and energy performance of buildings. In this scenario, the interest of plaster-based composites as insulating materials increases, in particular for new applications, as insulators for the building envelope, and this deserves to be studied. In this investigation, new plaster-based composites with cork were produced and tested at lab scale, in order to obtain cheap solutions with improved thermo-physical and acoustic performance. The results show that it is possible to improve the thermal, mechanical, and acoustic performance of construction biomaterials by using plaster as a binder and cork as a natural reinforcement: thermal conductivity was equal to 0.097 W/m.K, the compressive strength to about 2.30 MPa, and the transmission loss to about 40 dB. Keywords: Plaster-Gypsum; Cork; Thermal, Mechanical and Acoustic Properties.


Author(s):  
J. R. Millette ◽  
R. S. Brown

The United States Environmental Protection Agency (EPA) has labeled as “friable” those building materials that are likely to readily release fibers. Friable materials when dry, can easily be crumbled, pulverized, or reduced to powder using hand pressure. Other asbestos containing building materials (ACBM) where the asbestos fibers are in a matrix of cement or bituminous or resinous binders are considered non-friable. However, when subjected to sanding, grinding, cutting or other forms of abrasion, these non-friable materials are to be treated as friable asbestos material. There has been a hypothesis that all raw asbestos fibers are encapsulated in solvents and binders and are not released as individual fibers if the material is cut or abraded. Examination of a number of different types of non-friable materials under the SEM show that after cutting or abrasion, tuffs or bundles of fibers are evident on the surfaces of the materials. When these tuffs or bundles are examined, they are shown to contain asbestos fibers which are free from binder material. These free fibers may be released into the air upon further cutting or abrasion.


Author(s):  
Mykhailo Kosmii ◽  
Vasyl. Kasiianchuk ◽  
Ruslan Zhyrak ◽  
Ivan Krykhovetskyi

The purpose of this paper is to analyze and research the legal mechanisms which make it possible to improve agroecology through the organization of cultivation of Jerusalem artichoke.Methodology. The methodology includes comprehensive analysis and generalization of available scientific, theoretical, practical and applied material and development of relevant conclusions and recommendations. During the research, the following methods of scientific cognition were used: dialectical, terminological, historical and legal, logical and normative, systemic and structural, functional, normative and dogmatic, generalization methods. Results. The process of analysis and research highlighted the possibilities of cultivating Jerusalem artichoke for improving agroecology, namely improving the ecological state of the atmosphere air and soil, preparing them for organic farming. The article contains examples of practical application of tubers of Jerusalem artichoke and herbage for the production of therapeutic and prophylactic products, alternative energy and highly efficient building materials. Scientific novelty. The study found that the authors summarized and systematized the levels of legal regulation in the field of using Jerusalem artichoke for improving agroecology, preparing soil for organic farming, in particular: the inter-sectoral level which covers the interaction of agricultural and environmental law in terms of cultivation and use of Jerusalem artichoke; the level of integrated environmental and legal regulation; level of individual resource (floristic) legal regulation; the level of environmental protection (anthropoprotection) legislation.Practical importance. The results of the study can be used in law-making and environmental protection activities related to issues of cultivating and using the Jerusalem artichoke as a means of improving agroecology.


2005 ◽  
Author(s):  
J. Martyny ◽  
K. Pacheco ◽  
R. Harbeck ◽  
E. Barker ◽  
M. Sills ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document