Group I metabotropic glutamate receptors contribute to the antiepileptic effect of electrical stimulation in hippocampal CA1 pyramidal neurons

2021 ◽  
pp. 106821
Author(s):  
Zahra Ghasemi ◽  
Nima Naderi ◽  
Amir Shojaei ◽  
Mohammad Reza Raoufy ◽  
Nooshin Ahmadirad ◽  
...  
2002 ◽  
Vol 88 (1) ◽  
pp. 107-116 ◽  
Author(s):  
David R. Ireland ◽  
Wickliffe C. Abraham

Previous studies have implicated phospholipase C (PLC)-linked Group I metabotropic glutamate receptors (mGluRs) in regulating the excitability of hippocampal CA1 pyramidal neurons. We used intracellular recordings from rat hippocampal slices and specific antagonists to examine in more detail the mGluR receptor subtypes and signal transduction mechanisms underlying this effect. Application of the Group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) suppressed slow- and medium-duration afterhyperpolarizations (s- and mAHP) and caused a consequent increase in cell excitability as well as a depolarization of the membrane and an increase in input resistance. Interestingly, with the exception of the suppression of the mAHP, these effects were persistent, and in the case of the sAHP lasting for more than 1 h of drug washout. Preincubation with the specific mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), reduced but did not completely prevent the effects of DHPG. However, preincubation with both MPEP and the mGluR1 antagonist LY367385 completely prevented the DHPG-induced changes. These results demonstrate that the DHPG-induced changes are mediated partly by mGluR5 and partly by mGluR1. Because Group I mGluRs are linked to PLC via G-protein activation, we also investigated pathways downstream of PLC activation, using chelerythrine and cyclopiazonic acid to block protein kinase C (PKC) and inositol 1,4,5-trisphosphate-(IP3)-activated Ca2+ stores, respectively. Neither inhibitor affected the DHPG-induced suppression of the sAHP or the increase in excitability nor did an inhibitor of PLC itself, U-73122. Taken together, these results argue that in CA1 pyramidal cells in the adult rat, DHPG activates mGluRs of both the mGluR5 and mGluR1 subtypes, causing a long-lasting suppression of the sAHP and a consequent persistent increase in excitability via a PLC-, PKC-, and IP3-independent transduction pathway.


1998 ◽  
Vol 80 (4) ◽  
pp. 1981-1988 ◽  
Author(s):  
Rod J. Sayer

Sayer, Rod J. Group I metabotropic glutamate receptors mediate slow inhibition of calcium current in neocortical neurons J. Neurophysiol. 80: 1981–1988, 1998. Metabotropic glutamate receptor (mGluR)-mediated inhibition of high-voltage-activated Ca2+ currents was investigated in pyramidal neurons acutely isolated from rat dorsal frontoparietal neocortex. Whole cell recordings were made at 30–32°C, with Ca2+ as the charge carrier. Selective agonists were used to classify the subgroup of mGluRs mediating the response. Ca2+ currents were inhibited by (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) and by the group I agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) but not by the group II agonist (2S,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)glycine (DCG-IV) or the group III agonist l(+)-2-amino-4-phosphonobutryic acid (l-AP4). (2S,1′S,2′S)-2-(carboxycyclopropyl)glycine (l-CCG-I) was effective at 10 and 100 μM but not at 1 μM, consistent with involvement of group I mGluRs. Variable results were obtained with the putative mGluR5-selective agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) and the putative mGluR1-selective antagonist (S)-4-carboxyphenylglycine [(S)-4CPG], indicating that the group I mGluR subtypes may vary between cells or that these compounds were activating other receptors. The actions of (+)-α-methyl-4-carboxyphenylglycine [(+)-MCPG] were consistent with it being a low-potency antagonist. Several features of the Ca2+ current inhibition evoked by DHPG distinguished it from the rapid modulation typical of a direct action of G proteins on Ca2+ channels; the inhibition was slow to reach maximum (tens of seconds), current activation was not slowed or shifted in the positive voltage direction, and the inhibition was not relieved by positive prepulses. Nimodipine and ω-conotoxin GVIA blocked fractions of the current and also reduced the magnitude of the responses to DHPG, indicating that both L- and N-type Ca2+ channels were regulated. These results further differentiate the slow modulatory pathway observed in neocortical neurons when Ca2+ is used as the charge carrier from the rapid voltage-dependent mechanism reported to inhibit Ba2+ currents under Ca2+-free conditions.


2005 ◽  
Vol 93 (6) ◽  
pp. 3102-3111 ◽  
Author(s):  
Joanna P. Tyszkiewicz ◽  
Zhen Yan

The metabotropic glutamate receptors (mGluRs) have been implicated in cognition, memory, and some neurodegenerative disorders, including the Alzheimer's disease (AD). To understand how the dysfunction of mGluRs contributes to the pathophysiology of AD, we examined the β-amyloid peptide (Aβ)-induced alterations in the physiological functions of mGluRs in prefrontal cortical pyramidal neurons. Two potential targets of mGluR signaling involved in cognition, the GABAergic system and the N-methyl-d-aspartate (NMDA) receptor, were examined. Activation of group I mGluRs with (S)-3,5-dihydroxyphenylglycine (DHPG) significantly increased the spontaneous inhibitory postsynaptic current (sIPSC) amplitude, and this effect was protein kinase C (PKC) sensitive. Treatment with Aβ abolished the DHPG-induced enhancement of sIPSC amplitude. On the other hand, activation of group II mGluRs with (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) significantly increased the NMDA receptor (NMDAR)-mediated currents via a PKC-dependent mechanism, and Aβ treatment also diminished the APDC-induced potentiation of NMDAR currents. In Aβ-treated slices, both DHPG and APDC failed to activate PKC. These results indicate that the mGluR regulation of GABA transmission and NMDAR currents is impaired by Aβ treatment probably due to the Aβ-mediated interference of mGluR activation of PKC. This study provides a framework within which the role of mGluRs in normal cognitive functions and AD can be better understood.


2007 ◽  
Vol 97 (4) ◽  
pp. 3136-3141 ◽  
Author(s):  
Thomas Heinbockel ◽  
Kathryn A. Hamilton ◽  
Matthew Ennis

In the main olfactory bulb, several populations of granule cells (GCs) can be distinguished based on the soma location either superficially, interspersed with mitral cells within the mitral cell layer (MCL), or deeper, within the GC layer (GCL). Little is known about the physiological properties of superficial GCs (sGCs) versus deep GCs (dGCs). Here, we used patch-clamp recording methods to explore the role of Group I metabotropic glutamate receptors (mGluRs) in regulating the activity of GCs in slices from wildtype and mGluR−/− mutant mice. In wildtype mice, bath application of the selective Group I mGluR agonist DHPG depolarized and increased the firing rate of both GC subtypes. In the presence of blockers of fast synaptic transmission (APV, CNQX, gabazine), DHPG directly depolarized both GC subtypes, although the two GC subtypes responded differentially to DHPG in mGluR1−/− and mGluR5−/− mice. DHPG depolarized sGCs in slices from mGluR5−/− mice, although it had no effect on sGCs in slices from mGluR1−/− mice. By contrast, DHPG depolarized dGCs in slices from mGluR1−/− mice but had no effect on dGCs in slices from mGluR5−/− mice. Previous studies showed that mitral cells express mGluR1 but not mGluR5. The present results therefore suggest that sGCs are more similar to mitral cells than dGCs in terms of mGluR expression.


Sign in / Sign up

Export Citation Format

Share Document