The stable tungsten isotope composition of sapropels and manganese-rich sediments from the Baltic Sea

2022 ◽  
Vol 578 ◽  
pp. 117303
Author(s):  
Florian Kurzweil ◽  
Olaf Dellwig ◽  
Martin Wille ◽  
Ronny Schoenberg ◽  
Helge W. Arz ◽  
...  
2010 ◽  
Vol 7 (8) ◽  
pp. 2489-2508 ◽  
Author(s):  
J. Gelting ◽  
E. Breitbarth ◽  
B. Stolpe ◽  
M. Hassellöv ◽  
J. Ingri

Abstract. To indentify sources and transport mechanisms of iron in a coastal marine environment, we conducted measurements of the physiochemical speciation of Fe in the euphotic zone at three different locations in the Baltic Sea. In addition to sampling across a salinity gradient, we conducted this study over the spring and summer season. Moving from the riverine input characterized low salinity Bothnian Sea, via the Landsort Deep near Stockholm, towards the Gotland Deep in the Baltic Proper, total Fe concentrations averaged 114, 44, and 15 nM, respectively. At all three locations, a decrease in total Fe of 80–90% from early spring to summer was observed. Particulate Fe (PFe) was the dominating phase at all stations and accounted for 75–85% of the total Fe pool on average. The Fe isotope composition (δ 56Fe) of the PFe showed constant positive values in the Bothnian Sea surface waters (+0.08 to +0.20‰). Enrichment of heavy Fe in the Bothnian Sea PFe is possibly associated to input of aggregated land derived Fe-oxyhydroxides and oxidation of dissolved Fe(II). At the Landsort Deep the isotopic fractionation of PFe changed between −0.08‰ to +0.28‰ over the sampling period. The negative values in early spring indicate transport of PFe from the oxic-anoxic boundary at ∼80 m depth. The average colloidal iron fraction (CFe) showed decreasing concentrations along the salinity gradient; Bothnian Sea 15 nM; Landsort Deep 1 nM, and Gotland Deep 0.5 nM. Field Flow Fractionation data indicate that the main colloidal carrier phase for Fe in the Baltic Sea is a carbon-rich fulvic acid associated compound, likely of riverine origin. A strong positive correlation between PFe and chl-a indicates that cycling of suspended Fe is at least partially controlled by primary production. However, this relationship may not be dominated by active uptake of Fe into phytoplankton, but instead may reflect scavenging and removal of PFe during phytoplankton sedimentation.


2020 ◽  
Author(s):  
Florian Kurzweil ◽  
Corey Archer ◽  
Martin Wille ◽  
Ronny Schoenberg ◽  
Carsten Münker ◽  
...  

2011 ◽  
Vol 8 (11) ◽  
pp. 3491-3499 ◽  
Author(s):  
X. Sun ◽  
P. Andersson ◽  
C. Humborg ◽  
B. Gustafsson ◽  
D. J. Conley ◽  
...  

Abstract. The aim of this study was to reconstruct diatom production in the subarctic northern tip of the Baltic Sea, Bothnian Bay, based on down-core analysis of Si isotopes in biogenic silica (BSi). Dating of the sediment showed that the samples covered the period 1820 to 2000. The sediment core record can be divided into two periods, an unperturbed period from 1820 to 1950 and a second period affected by human activities (from 1950 to 2000). This has been observed elsewhere in the Baltic Sea. The shift in the sediment core record after 1950 is likely caused by large scale damming of rivers. Diatom production was inferred from the Si isotope composition which ranged between δ30Si −0.18‰ and +0.58‰ in BSi, and assuming fractionation patterns due to the Raleigh distillation, the production was shown to be correlated with air and water temperature, which in turn were correlated with the mixed layer (ML) depth. The sedimentary record showed that the deeper ML depth observed in colder years resulted in less production of diatoms. Pelagic investigations in the 1990's have clearly shown that diatom production in the Baltic Sea is controlled by the ML depth. Especially after cold winters and deep water mixing, diatom production was limited and dissolved silicate (DSi) concentrations were not depleted in the water column after the spring bloom. Our method corroborates these findings and offers a new method to estimate diatom production over much longer periods of time in diatom dominated aquatic systems, i.e. a large part of the world's ocean and coastal seas.


2009 ◽  
Vol 6 (4) ◽  
pp. 6491-6537 ◽  
Author(s):  
J. Gelting ◽  
E. Breitbarth ◽  
B. Stolpe ◽  
M. Hassellöv ◽  
J. Ingri

Abstract. Measurements of the physiochemical speciation of Fe in the euphotic zone were performed at three different locations, over a well defined salinity gradient, during spring and summer in the Baltic Sea. The average of total Fe changed from 114 nM in the Bothnian Sea, 44 nM at Landsort Deep and 15 nM at Gotland Deep. Particulate Fe (PFe) was the dominating phase at all stations and on average accounted for 75–85% of the total Fe pool. At all three locations, a decrease in total Fe of 80–90% from initial measurements compared to the summer was found. A strong positive correlation between PFe and chl-a was observed. Hence, primary production strongly regulates cycling of suspended Fe. However, this relation is not dominated by active uptake of Fe in phytoplankton; instead this reflects cycling of phosphorus, growth of diatoms, and removal of PFe during phytoplankton sedimentation. The average colloidal iron fraction, CFe, showed decreasing concentrations along the salinity gradient; Bothnian Sea 15 nM; Landsort Deep 1 nM and Gotland Deep 0.5 nM. Field Flow Fractionation data indicate that the main colloidal carrier phase for Fe in the Baltic Sea is a carbon-rich fulvic acid associated compound, likely of riverine origin. The Fe isotope composition (δ56Fe) of the PFe showed constant positive values in the Bothnian Sea surface waters (+0.08 to +0.20‰). Enrichment of heavy Fe in the Bothnian Sea PFe is most likely associated to input of aggregated land derived Fe-oxyhydroxides and a rapid overturn of Fe(II). At the Landsort deep, the fractionation of PFe changed between −0.08‰ to +0.28‰. The negative values, in early spring, probably indicate exchange over the oxic-anoxic boundary at ~80 m depth.


Boreas ◽  
2002 ◽  
Vol 31 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Christian Christiansen ◽  
Helmar Kunzendorf ◽  
Kay-Christian Emeis ◽  
Rudolf Endler ◽  
Ulrich Struck ◽  
...  

2003 ◽  
pp. 136-146
Author(s):  
K. Liuhto

Statistical data on reserves, production and exports of Russian oil are provided in the article. The author pays special attention to the expansion of opportunities of sea oil transportation by construction of new oil terminals in the North-West of the country and first of all the largest terminal in Murmansk. In his opinion, one of the main problems in this sphere is prevention of ecological accidents in the process of oil transportation through the Baltic sea ports.


Author(s):  
Angelina E. Shatalova ◽  
Uriy A. Kublitsky ◽  
Dmitry A. Subetto ◽  
Anna V. Ludikova ◽  
Alar Rosentau ◽  
...  

The study of paleogeography of lakes is an actual and important direction in modern science. As part of the study of lakes in the North-West of the Karelian Isthmus, this analysis will establish the dynamics of salinity of objects, which will allow to reconstruct changes in the level of the Baltic Sea in the Holocene.


Author(s):  
Małgorzata Leśniewska ◽  
Małgorzata Witak

Holocene diatom biostratigraphy of the SW Gulf of Gdańsk, Southern Baltic Sea (part III)The palaeoenvironmental changes of the south-western part of the Gulf of Gdańsk during the last 8,000 years, with reference to the stages of the Baltic Sea, were reconstructed. Diatom analyses of two cores taken from the shallower and deeper parts of the basin enabled the conclusion to be drawn that the microflora studied developed in the three Baltic phases: Mastogloia, Littorina and Post-Littorina. Moreover, the so-called anthropogenic assemblage was observed in subbottom sediments of the study area.


2003 ◽  
pp. 50-61 ◽  
Author(s):  
V. A. Smagin ◽  
M. G. Napreenko

The paper characterizes the 3 associations comprising plant communities with Sphagnum rubellum in the south-eastern part of the Baltic region. The new syntaxa differ from each other both in their floristic characters and the pronounced affinity to definite regional mire types and particular habitats. The ass. Drosero-Sphagnetum rubelli is typical of the relatively most thorough ranges. It is observed from the Kaliningrad region to the Karelian Isthmus and, according to the published reference, occurs even throughout the whole area around the Baltic Sea. Its most typical habitat is that of margins of mire lakes and pools. The ass. Eriophoro-Sphagnetum rubelli occurs in central plateaus of convex plateau-like bogs, typical of the areas adjacent to the Baltic Sea coast. It occupies extended flat mire ecotopes with the water level 0.2–0.25 m deep. The ass. Empetro-Sphagnetum rubelli is characteristic of the retrogressive complex in the convex bogs of the East-Baltic Province. It is mostly observed along the coast of the Gulf of Finland. Its stands are rather dynamic and unstable in both space and time. The presence of communities comprised by these 3 associations is an important vegetation character of the series of regional mire types. Assuming an association level of the respective syntaxa seems rational for the purposes of adequate reflection of plant cover diversity.


Sign in / Sign up

Export Citation Format

Share Document