Energy management of Internet data centers in multiple local energy markets

2022 ◽  
Vol 205 ◽  
pp. 107760
Author(s):  
Caishan Guo ◽  
Fengji Luo ◽  
Zexiang Cai ◽  
Zhao Yang Dong
2021 ◽  
Vol 13 (7) ◽  
pp. 3638
Author(s):  
Jan Kaselofsky ◽  
Marika Rošā ◽  
Anda Jekabsone ◽  
Solenne Favre ◽  
Gabriel Loustalot ◽  
...  

Managing energy use by municipalities should be an important part of local energy and climate policy. The ISO 50001 standard constitutes an internationally recognized catalogue of requirements for systematic energy management. Currently, this standard is mostly implemented by companies. Our study presents an approach where consultants supported 28 European municipalities in establishing energy management systems. A majority (71%) of these municipalities had achieved ISO 50001 certification by the end of our study. We also conducted two surveys to learn more about motivations and challenges when it comes to establishing municipal energy management systems. We found that organizational challenges and resource constraints were the most important topics in this regard. Based on the experiences in our study we present lessons learned regarding supporting municipalities in establishing energy management systems.


2021 ◽  
Vol 299 ◽  
pp. 117249
Author(s):  
Wilhelm Cramer ◽  
Klemens Schumann ◽  
Michael Andres ◽  
Chris Vertgewall ◽  
Antonello Monti ◽  
...  

Author(s):  
Mohsen Amini Salehi ◽  
P. Radha Krishna ◽  
Krishnamurty Sai Deepak ◽  
Rajkumar Buyya

2020 ◽  
Vol 10 (7) ◽  
pp. 2459 ◽  
Author(s):  
Pawan Singh ◽  
Baseem Khan ◽  
Om Prakash Mahela ◽  
Hassan Haes Alhelou ◽  
Ghassan Hayek

An efficient scheduling reduces the time required to process the jobs, and energy management decreases the service cost as well as increases the lifetime of a battery. A balanced trade-off between the energy consumed and processing time gives an ideal objective for scheduling jobs in data centers and battery based devices. An online multiprocessor scheduling multiprocessor with bounded speed (MBS) is proposed in this paper. The objective of MBS is to minimize the importance-based flow time plus energy (IbFt+E), wherein the jobs arrive over time and the job’s sizes are known only at completion time. Every processor can execute at a different speed, to reduce the energy consumption. MBS is using the tradition power function and bounded speed model. The functioning of MBS is evaluated by utilizing potential function analysis against an offline adversary. For processors m ≥ 2, MBS is O(1)-competitive. The working of a set of jobs is simulated to compare MBS with the best known non-clairvoyant scheduling. The comparative analysis shows that the MBS outperforms other algorithms. The competitiveness of MBS is the least to date.


Sign in / Sign up

Export Citation Format

Share Document