scholarly journals Investigation into the impacts of design, installation, operation and maintenance issues on performance and degradation of installed solar photovoltaic (PV) systems

2022 ◽  
Vol 66 ◽  
pp. 165-176
Author(s):  
Bernard Aboagye ◽  
Samuel Gyamfi ◽  
Eric Antwi Ofosu ◽  
Sinisa Djordjevic
2018 ◽  
Vol 225 ◽  
pp. 04004
Author(s):  
Tan Dei Han ◽  
Mohamad Rosman M. Razif ◽  
Shaharin A. Sulaiman

Solar photovoltaic (PV) systems has the potential of supplying infinite electricity from renewable energy to rural areas around Malaysia. Various preterm failures happening frequently on the system lead to its drop in efficiency and breakdown. Lack of studies on the system in Malaysia hinders the development in terms of operation and maintenance. There is no proper documentation relevant to the premature failure of the system in Malaysia. The main objective of this project is to study the nature of premature failure of stand-alone solar photovoltaic system in Malaysia in order to improve the operation and maintenance of the system. The present study would provide reference for proper planning on operation and maintenance of the PV system. The study was conducted base on expert’s input and extensive literature survey. FMEA method and ISM approach are applied to analyze the data collected. Poor cooling system have the highest risk priority number. Poor workmanship is the least depending factor for premature failure to happen thus requires most attention. Highest driving force of premature failure is poor monitoring and maintenance. More focus should be given to these premature failure during the planning for operation and maintenance due to its severity and impact.


2021 ◽  
Vol 11 (14) ◽  
pp. 6524
Author(s):  
Andrés Pérez-González ◽  
Álvaro Jaramillo-Duque ◽  
Juan Bernardo Cano-Quintero

Nowadays, the world is in a transition towards renewable energy solar being one of the most promising sources used today. However, Solar Photovoltaic (PV) systems present great challenges for their proper performance such as dirt and environmental conditions that may reduce the output energy of the PV plants. For this reason, inspection and periodic maintenance are essential to extend useful life. The use of unmanned aerial vehicles (UAV) for inspection and maintenance of PV plants favor a timely diagnosis. UAV path planning algorithm over a PV facility is required to better perform this task. Therefore, it is necessary to explore how to extract the boundary of PV facilities with some techniques. This research work focuses on an automatic boundary extraction method of PV plants from imagery using a deep neural network model with a U-net structure. The results obtained were evaluated by comparing them with other reported works. Additionally, to achieve the boundary extraction processes, the standard metrics Intersection over Union (IoU) and the Dice Coefficient (DC) were considered to make a better conclusion among all methods. The experimental results evaluated on the Amir dataset show that the proposed approach can significantly improve the boundary and segmentation performance in the test stage up to 90.42% and 91.42% as calculated by IoU and DC metrics, respectively. Furthermore, the training period was faster. Consequently, it is envisaged that the proposed U-Net model will be an advantage in remote sensing image segmentation.


Author(s):  
Rakesh Dalal ◽  
Kamal Bansal ◽  
Sapan Thapar

Rooftop solar photovoltaic(PV) installation in India have increased in last decade because of the flat 40 percent subsidy extended for rooftop solar PV systems (3 kWp and below) by the Indian government under the solar rooftop scheme. From the residential building owner's perspective, solar PV is competitive when it can produce electricity at a cost less than or equal grid electricity price, a condition referred as “grid parity”. For assessing grid parity of 3 kWp and 2 kWp residential solar PV system, 15 states capital and 19 major cities were considered  for the RET screen simulation by using solar isolation, utility grid tariff, system cost and other economic parameters. 3 kWp and 2 kWp rooftop solar PV with and without subsidy scenarios were considered for simulation using RETscreen software. We estimate that without subsidy no state could achieve grid parity for 2kWp rooftop solar PV plant. However with 3 kWp rooftop solar PV plant only 5 states could achieve grid parity without subsidy and with government subsidy number of states increased to 7, yet wide spread parity for residential rooftop solar PV is still not achieved. We find that high installation costs, subsidized utility grid supply to low energy consumer and financing rates are major barriers to grid parity.


2021 ◽  
Vol 7 (3) ◽  
pp. 30-33
Author(s):  
Sourabh Kedar ◽  
Mr. Santosh Singh Negi

Solar photovoltaic (PV) systems have mainly been used in the past decade. Inverter-powered photovoltaic grid topologies are widely used to meet electricity demand and to integrate forms of renewable energy into power grids. Meeting the growing demand for electricity is a major challenge today. This paper provides a detailed overview of the topological trend of inverters with connection to the photovoltaic grid, as well as the advantages, disadvantages and main characteristics of the individual inverters. For proper integration into a network, coordination between the supporting devices used for reactive power compensation and their optimal reactive power capacity for grid current stability is important.


2019 ◽  
Vol 9 (8) ◽  
pp. 1594 ◽  
Author(s):  
Chin-Cheng Chou ◽  
Ping-Han Chung ◽  
Ray-Yeng Yang

A solar photovoltaic system consists of tilted panels and is prone to extreme wind loads during hurricanes or typhoons. To ensure the proper functioning of the system, it is important to determine its aerodynamic characteristics. Offshore photovoltaic (PV) systems have been developed in recent years. Wind loads are associated with wind, wave climates, and tidal regimes. In this study, the orientation of a single panel is adjusted to different angles of tilt (10°–80°) and angles of incidence for wind (0°–180°) that are pertinent to offshore PV panels. The critical wind loads on a tilted panel are observed at lower angles of incidence for the wind, when the angle of tilt for the panel is greater than 30°.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4820 ◽  
Author(s):  
Moiz Masood Syed ◽  
Gregory M. Morrison ◽  
James Darbyshire

More than 2 million houses in Australia have installed solar photovoltaic (PV) systems; however, apartment buildings have adopted a low percentage of solar PV and battery storage installations. Given that grid usage reduction through PV and battery storage is a primary objective in most residential buildings, apartments have not yet fully benefited from installations of such systems. This research presents shared microgrid configurations for three apartment buildings with PV and battery storage and evaluates the reduction in grid electricity usage by analyzing self-sufficiency. The results reveal that the three studied sites at White Gum Valley achieved an overall self-sufficiency of more than 60%. Owing to the infancy of the shared solar and battery storage market for apartment complexes and lack of available data, this study fills the research gap by presenting preliminary quantitative findings from implementation in apartment buildings.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1213 ◽  
Author(s):  
A. Sayed ◽  
M. El-Shimy ◽  
M. El-Metwally ◽  
M. Elshahed

Recently, solar power generation is significantly contributed to growing renewable sources of electricity all over the world. The reliability and availability improvement of solar photovoltaic (PV) systems has become a critical area of interest for researchers. Reliability, availability, and maintainability (RAM) is an engineering tool used to address operational and safety issues of systems. It aims to identify the weakest areas of a system which will improve the overall system reliability. In this paper, RAM analysis of grid-connected solar-PV system is presented. Elaborate RAM analysis of these systems is presented starting from the sub-assembly level to the subsystem level, then the overall system. Further, an improved Reliability Block Diagram is presented to estimate the RAM performance of seven practical grid-connected solar-PV systems. The required input data are obtained from worldwide databases of failures, and repair of various subassemblies comprising various meteorological conditions. A novel approach is also presented in order to estimate the best probability density function for each sub-assembly. The monitoring of the critical subassemblies of a PV system will increase the possibility not only for improving the availability of the system, but also to optimize the maintenance costs. Additionally, it will inform the operators about the status of the various subsystems of the system.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1921 ◽  
Author(s):  
B. Kavya Santhoshi ◽  
K. Mohana Sundaram ◽  
Sanjeevikumar Padmanaban ◽  
Jens Bo Holm-Nielsen ◽  
Prabhakaran K. K.

Solar Photovoltaic (PV) systems have been in use predominantly since the last decade. Inverter fed PV grid topologies are being used prominently to meet power requirements and to insert renewable forms of energy into power grids. At present, coping with growing electricity demands is a major challenge. This paper presents a detailed review of topological advancements in PV-Grid Tied Inverters along with the advantages, disadvantages and main features of each. The different types of inverters used in the literature in this context are presented. Reactive power is one of the ancillary services provided by PV. It is recommended that reactive power from the inverter to grid be injected for reactive power compensation in localized networks. This practice is being implemented in many countries, and researchers have been trying to find an optimal way of injecting reactive power into grids considering grid codes and requirements. Keeping in mind the importance of grid codes and standards, a review of grid integration, the popular configurations available in literature, Synchronization methods and standards is presented, citing the key features of each kind. For successful integration with a grid, coordination between the support devices used for reactive power compensation and their optimal reactive power capacity is important for stability in grid power. Hence, the most important and recommended intelligent algorithms for the optimization and proper coordination are peer reviewed and presented. Thus, an overview of Solar PV energy-fed inverters connected to the grid is presented in this paper, which can serve as a guide for researchers and policymakers.


2012 ◽  
Vol 466-467 ◽  
pp. 272-276
Author(s):  
Dao E Qiao ◽  
Xiao Li Xu

Efficient energy yield is a major concern in solar photovoltaic (PV) systems. This paper describes a distributed control system to optimize the power output of the PV systems. The PV systems contain many PV modules. And every PV module has a monitoring and control network node. The communication data are successfully transmitted using a low-cost ZigBee wireless network. The field conditions are monitored by voltage, current, irradiance, and temperature sensors. The power operating point tracking is implemented at the PV module level. The reference voltage is calculated based on a neural network model, which is used to identify maximum power point. And the output voltage is regulated by a digital controller in the integrated converter according to the reference voltage. Experiments show that the power output can be greatly increased with this distributed control system under many shadow conditions.


Sign in / Sign up

Export Citation Format

Share Document