The real-time dynamic multi-objective optimization of a building integrated photovoltaic thermal (BIPV/T) system enhanced by phase change materials

2022 ◽  
Vol 46 ◽  
pp. 103777
Author(s):  
Ali Sohani ◽  
Amir Dehnavi ◽  
Hoseyn Sayyaadi ◽  
Siamak Hoseinzadeh ◽  
Erfan Goodarzi ◽  
...  
2021 ◽  
Vol 35 (11) ◽  
pp. 1441-1442
Author(s):  
Sawyer Campbell ◽  
Yuhao Wu ◽  
Eric Whiting ◽  
Lei Kang ◽  
Pingjuan Werner ◽  
...  

Metasurfaces offer the potential to realize large SWaP (size, weight, and power) reduction over conventional optical elements for their ability to achieve comparable functionalities in ultrathin geometries. Moreover, metasurfaces designed with phase change materials offer the potential to go beyond what is achievable by conventional optics by enabling multiple functionalities in a single reconfigurable meta-device. However, designing a single metasurface geometry that simultaneously achieves multiple desired functionalities while meeting all bandwidth requirements and fabrication constraints is a very challenging problem. Fortunately, this challenge can be overcome by the use of state-of-the-art multi-objective optimization algorithms which are well-suited for the inverse-design of multifunctional meta-devices.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Mahsa Khaki ◽  
Amin Shahsavar ◽  
Shoaib Khanmohammadi

In this paper, a genetic algorithm-based multi-objective optimization of a building-integrated photovoltaic/thermal (BIPV/T) system is carried out to find the best system configurations which lead to maximum energetic and exergetic performances for Kermanshah, Iran climatic condition. In the proposed BIPV/T system, the cooling potential of ventilation and exhaust airs are used in buildings for cooling the PV panels and also heating the ventilation air by heat rejection of PV panels. Four scenarios with various criteria in the form of system efficiencies and useful outputs are considered to reflect all possible useful outputs in the optimization procedure. This study models a glazed BIPV/T system with various collector areas (Apv=10,15,25,and30m2) and different length to width ratio (L/W=0.5,1,1.5,and2) to determine the optimum air mass flow rate, bottom heat loss coefficient, depth of the channel as well as the optimum depth of the air gap between PV panel and glass cover that maximize two defined objective functions in different scenarios. Results showed that using fourth scenario (with the annual total useful thermal and electrical outputs as objective functions) and first scenario (with the annual average first- and second-law efficiencies as objective functions) for optimizing the proposed BIPV/T system leads to the highest amount of useful thermal and overall outputs, respectively. Moreover, it was concluded that, if the electrical output of the system is more important than the thermal output, the first scenario gives better results.


2021 ◽  
Vol 343 ◽  
pp. 03005
Author(s):  
Florina Chiscop ◽  
Bogdan Necula ◽  
Carmen Cristiana Cazacu ◽  
Cristian Eugen Stoica

The topic of this paper represents our research in the process of creating a virtual model (digital twin) for a fast-food company production chain starting with the moment when a customer launches an order, following with the processing of that order, until the customer receives it. The model will describe elements that are included in this process such as equipment, human resources and the necessary space that is needed to host this layout. The virtual model created in a simulation platform will be a replicate of a real fast-food company, thus helping us observe the real time dynamic of this production system. Using WITNESS HORIZON 23 we will construct the model of the layout based on real time data received from the fast-food company. This digital twin will be used to manage the production chain material flow, evaluating the performance of the system architecture in various scenarios. In order to obtain a diagnosis of the system’s performance we will simulate the workflow running through preliminary architecture in compliance with the real time behaviour to identify the bottlenecks and blockages in the flow trajectory. In the end we will propose two different optimised architectures for the fast-food company production chain.


Sign in / Sign up

Export Citation Format

Share Document