Effective microwave-hydrothermal reduction of graphene oxide for efficient energy storage

2022 ◽  
Vol 48 ◽  
pp. 103962
Author(s):  
Antony R. Thiruppathi ◽  
Joshua van der Zalm ◽  
Libin Zeng ◽  
Michael Salverda ◽  
Peter C. Wood ◽  
...  
Author(s):  
Sunil P. Lonkar ◽  
Saeed M. Alhassan

A nanostructured hybrid of MoS2-MoO2 and graphene was synthesized by employing a simple in-situ solvent-free strategy. In this solid-state method, the precursors were ball-milled for homogeneous intercalation and distribution, which...


2014 ◽  
Vol 2 (16) ◽  
pp. 5730-5737 ◽  
Author(s):  
Yan-Zhen Liu ◽  
Cheng-Meng Chen ◽  
Yong-Feng Li ◽  
Xiao-Ming Li ◽  
Qing-Qiang Kong ◽  
...  

Reduced graphene oxide powder was prepared by a flame-induced reduction method with the assist of flammable polar solvents. The new method is simple, efficient, energy saving, low-cost and scalable. As-prepared reduced graphene oxide displays excellent supercapacitive performance.


Author(s):  
Rouwei Yan ◽  
Biao Xu ◽  
K. P. Annamalai ◽  
Tianlu Chen ◽  
Zhiming Nie ◽  
...  

Background : Renewable energies are in great demand because of the shortage of traditional fossil energy and the associated environmental problems. Ni and Se-based materials are recently studied for energy storage and conversion owing to their reasonable conductivities and enriched redox activities as well as abundance. However, their electrochemical performance is still unsatisfactory for practical applications. Objective: To enhance the capacitance storage of Ni-Se materials via modification of their physiochemical properties with Fe. Methods: A two-step method was carried out to prepare FeNi-Se loaded reduced graphene oxide (FeNi-Se/rGO). In the first step, metal salts and graphene oxide (GO) were mixed under basic condition and autoclaved to obtain hydroxide intermediates. As a second step, selenization process was carried out to acquire FeNi-Se/rGO composites. Results: X-ray diffraction measurements (XRD), nitrogen adsorption at 77K, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out to study the structures, porosities and the morphologies of the composites. Electrochemical measurements revealed that FeNi-Se/rGO notably enhanced capacitance than the NiSe/G composite. This enhanced performance was mainly attributed to the positive synergistic effects of Fe and Ni in the composites, which not only had influence on the conductivity of the composite but also enhanced redox reactions at different current densities. Conclusion: NiFe-Se/rGO nanocomposites were synthesized in a facile way. The samples were characterized physicochemically and electrochemically. NiFeSe/rGO giving much higher capacitance storage than the NiSe/rGO explained that the nanocomposites could be an electrode material for energy storage device applications.


2021 ◽  
Author(s):  
Shichao Huang ◽  
Jialun Li ◽  
Xueyu Zhang ◽  
Xijia Yang ◽  
Liying Wang ◽  
...  

Reduced graphene oxide/polyaniline wrapped carbonized sponge with elasticity for energy storage and pressure sensing.


Author(s):  
Vitor H. N. Martins ◽  
Nicolás M. S. Siqueira ◽  
Jéssica E. S. Fonsaca ◽  
Sergio H. Domingues ◽  
Victor H. R. Souza

RSC Advances ◽  
2021 ◽  
Vol 11 (45) ◽  
pp. 27801-27811
Author(s):  
M. Vandana ◽  
Y. S. Nagaraju ◽  
H. Ganesh ◽  
S. Veeresh ◽  
H. Vijeth ◽  
...  

Representation of the synthesis steps of SnO2QDs/GO/PPY ternary composites and SnO2QDs/GO/PPY//GO/charcoal asymmetric supercapacitor device.


Sign in / Sign up

Export Citation Format

Share Document