Decoupling tests on axial heat-transfer in highly turbulent Taylor-Couette flow using thermal waves

Author(s):  
Guohu Luo ◽  
Zhenqiang Yao
Author(s):  
S. Gilchrist ◽  
C. Y. Ching ◽  
D. Ewing

An experimental investigation was performed to determine the effect that surface roughness has on the heat transfer in an axial Taylor-Couette flow. The experiments were performed using an inner rotating cylinder in a stationary water jacket for Taylor numbers of 106 to 5×107 and axial Reynolds numbers of 900 to 2100. Experiments were performed for a smooth inner cylinder, a cylinder with two-dimensional rib roughness and a cylinder with three-dimensional cubic protrusions. The heat transfer results for the smooth cylinder were in good agreement with existing experimental data. The change in the Nusselt number was relatively independent of the axial Reynolds number for the cylinder with rib roughness. This result was similar to the smooth wall case but the heat transfer was enhanced by 5% to 40% over the Taylor number range. The Nusselt number for the cylinder with cubic protrusions exhibited an axial Reynolds number dependence. For a low axial Reynolds number of 980, the Nusselt number increased with the Taylor number in a similar way to the other test cylinders. At higher axial Reynolds numbers, the heat transfer was initially independent of the Taylor number before increasing with Taylor number similar to the lower Reynolds number case. In this higher axial Reynolds number case the heat transfer was enhanced by up to 100% at the lowest Taylor number of 1×106 and by approximately 35% at the highest Taylor number of 5×107.


Author(s):  
Vinicius Malatesta ◽  
Vinícius Hagemeyer Chiumento

2021 ◽  
Vol 9 ◽  
Author(s):  
Dong Liu ◽  
◽  
Mohammed Mohammedsalih ◽  
Amponsah-Gyenin Nana Kofi ◽  
Shi-cheng Ding ◽  
...  

Heat transfer enhancement is by far an important component in the design of numerous industrial applications of Taylor-Couette flow including electric motors and particularly rotating machinery. To optimize the performances of these machines, superior knowledge of the fluid flow is vital to better estimate the heat transfer distribution. This study will specifically consider the effect the slit number and width possess on the distribution of turbulent Taylor-Couette flow and the resulting heat transfer correlation in the annulus of two concentric cylinders under varying conditions. A numerical simulation method is intended for the study using varying slit structure parameters of widths (2.5 ≤ w ≤ 7.5) mm and fitted with 6, 9 and 12 number of slits. The slit effect is then investigated under both isotherm and non-isotherm conditions considering the interactions between fluid flow regions in the mainstream area and the annulus. The small-scale vortex that appears in the annulus region improves the heat transferability between the fluid in the annulus and the main region as well as the heat transfer performance of the model with a gradual increase in Reynolds number.


1998 ◽  
Vol 120 (1) ◽  
pp. 65-71 ◽  
Author(s):  
R. Kedia ◽  
M. L. Hunt ◽  
T. Colonius

Numerical simulations have been performed to study the effects of the gravitational and the centrifugal potentials on the stability of heated, incompressible Taylor-Couette flow. The flow is confined between two differentially heated, concentric cylinders, and the inner cylinder is allowed to rotate. The Navier-Stokes equations and the coupled energy equation are solved using a spectral method. To validate the code, comparisons are made with existing linear stability analysis and with experiments. The code is used to calculate the local and average heat transfer coefficients for a fixed Reynolds number (Re = 100) and a range of Grashof numbers. The investigation is primarily restricted to radius ratios 0.5 and 0.7 for fluids with Prandtl number of about 0.7. The variation of the local coefficients of heat transfer on the cylinder surface is investigated, and maps showing different stable states of the flow are presented. Results are also presented in terms of the equivalent conductivity, and show that heat transfer decreases with Grashof number in axisymmetric Taylor vortex flow regime, and increases with Grashof number after the flow becomes nonaxisymmetric.


2021 ◽  
Vol 16 (1) ◽  
pp. JTST0003-JTST0003
Author(s):  
Hiroya MAMORI ◽  
Koji FUKUDOME ◽  
Kohei OGINO ◽  
Naoya FUKUSHIMA ◽  
Makoto YAMAMOTO

2021 ◽  
pp. 271-271
Author(s):  
Ismahane Chaieb ◽  
Toufik Boufendi ◽  
Xavier Nicolas

Taylor-Couette flows in a horizontal annular gap between finite coaxial cylinders in rotor-stator configuration are numerically investigated. The inner cylinder (rotor) rotates at a constant angular velocity while the outer cylinder (stator) is at rest. They are limited at their extremities by two fixed walls that prevent axial fluid flow. In addition, a heat transfer is generated by an imposed temperature difference, with the rotor hotter than the stator while the end-walls are adiabatic. The fluid physical properties are temperature dependent. This non-linear physics problem, with a strong coupling of the conservation equations and boundary conditions, is solved by a finite volume method with numerical schemes of second order space and time accuracies. The radius and aspect ratios and the Taylor, Grashof and Prandt numbers are the control parameters. The developed numerical code has been tested for different meshes and perfectly validated. Extensive calculations have been made in large ranges of the Taylor and Grashof numbers to analyze the Taylor-Couette flow in convection modes. The results highlight the dynamic and thermal instabilities generated in the Taylor Couette flow from the appearance of Ekman cells to the Taylor vortex propagation in the entire annulus. The combined effect of these vortices with the secondary flow improves the heat transfer. Furthermore, the influence of the physical properties in the radial direction is more marked in the vicinity of the walls. Finally, we propose an empirical correlation of the Nusselt number in the studied parameter ranges.


Sign in / Sign up

Export Citation Format

Share Document