Long-term effects of controlled release urea application on crop yields and soil fertility under rice-oilseed rape rotation system

2015 ◽  
Vol 184 ◽  
pp. 65-73 ◽  
Author(s):  
Jibiao Geng ◽  
Yunbao Sun ◽  
Min Zhang ◽  
Chengliang Li ◽  
Yuechao Yang ◽  
...  
2016 ◽  
Vol 108 (4) ◽  
pp. 1703-1716 ◽  
Author(s):  
Wenkui Zheng ◽  
Changling Sui ◽  
Zhiguang Liu ◽  
Jibiao Geng ◽  
Xiaofei Tian ◽  
...  

2004 ◽  
Vol 265 (1-2) ◽  
pp. 101-109 ◽  
Author(s):  
Meng Cifu ◽  
Lu Xiaonan ◽  
Cao Zhihong ◽  
Hu Zhengyi ◽  
Ma Wanzhu

2017 ◽  
Vol 5 (1) ◽  
pp. 42-50
Author(s):  
Nabin Rawal ◽  
Rajan Ghimire ◽  
Devraj Chalise

Balanced nutrient supply is important for the sustainable crop production. We evaluated the effects of nutrient management practices on soil properties and crop yields in rice (Oryza sativa L.) - rice - wheat (Triticum aestivum L.) system in a long-term experiment established at National Wheat Research Program (NWRP), Bhairahawa, Nepal. The experiment was designed as a randomized complete block experiment with nine treatments and three replications. Treatments were applied as: T1- no nutrients added, T2- N added; T3- N and P added; T4- N and K added; T5- NPK added at recommended rate for all crops. Similarly, T6- only N added in rice and NPK in wheat at recommended rate; T7- half N; T8- half NP of recommended rate for both crops; and T9- farmyard manure (FYM) @10 Mg ha-1 for all crops in rotation. Results of the study revealed that rice and wheat yields were significantly greater under FYM than all other treatments. Treatments that did not receive P (T2, T3, T7, T8) and K (T2, T4) had considerably low wheat yield than treatments that received NPK (T5) and FYM (T9). The FYM lowered soil pH and improved soil organic matter (SOM), total nitrogen (TN), available phosphorus (P), and exchangeable potassium (K) contents than other treatments. Management practices that ensure nutrient supply can increase crop yield and improve soil fertility status.Int. J. Appl. Sci. Biotechnol. Vol 5(1): 42-50


2020 ◽  
Vol 196 ◽  
pp. 104438 ◽  
Author(s):  
Zeli Li ◽  
Zhiguang Liu ◽  
Min Zhang ◽  
Chengliang Li ◽  
Yuncong C. Li ◽  
...  

2001 ◽  
Vol 1 ◽  
pp. 114-121 ◽  
Author(s):  
Lenz Haderlein ◽  
T.L. Jensen ◽  
R.E. Dowbenko ◽  
A.D. Blaylock

Controlled release nitrogen (N) fertilizers have been commonly used in horticultural applications such as turf grasses and container-grown woody perennials. Agrium, a major N manufacturer in North and South America, is developing a low-cost controlled release urea (CRU) product for use in field crops such as grain corn, canola, wheat, and other small grain cereals. From 1998 to 2000, 11 field trials were conducted across western Canada to determine if seed-placed CRU could maintain crop yields and increase grain N and N use efficiency when compared to the practice of side-banding of urea N fertilizer. CRU was designed to release timely and adequate, but not excessive, amounts of N to the crop. Crop uptake of N from seed-placed CRU was sufficient to provide yields similar to those of side-banded urea N. Grain N concentrations of the CRU treatments were higher, on average, than those from side-banded urea, resulting in 4.2% higher N use efficiency across the entire N application range from 25 to 100 kg ha-1. Higher levels of removal of N in grain from CRU compared to side-banded urea can result in less residual N remaining in the soil, and limit the possibility of N losses due to denitrification and leaching.


Sign in / Sign up

Export Citation Format

Share Document