A new solid-beam approach based on first or higher-order beam theories for finite element analysis of thin to thick structures

2022 ◽  
Vol 200 ◽  
pp. 103655
Author(s):  
Guoqiang Wei ◽  
Pascal Lardeur ◽  
Frédéric Druesne
Author(s):  
Sara McCaslin ◽  
Kent Lawrence

Closed-form solutions, as opposed to numerically integrated solutions, can now be obtained for many problems in engineering. In the area of finite element analysis, researchers have been able to demonstrate the efficiency of closed-form solutions when compared to numerical integration for elements such as straight-sided triangular [1] and tetrahedral elements [2, 3]. With higher order elements, however, the length of the resulting expressions is excessive. When these expressions are to be implemented in finite element applications as source code files, large source code files can be generated, resulting in line length/ line continuation limit issues with the compiler. This paper discusses a simple algorithm for the reduction of large source code files in which duplicate terms are replaced through the use of an adaptive dictionary. The importance of this algorithm lies in its ability to produce manageable source code files that can be used to improve efficiency in the element generation step of higher order finite element analysis. The algorithm is applied to Fortran files developed for the implementation of closed-form element stiffness and error estimator expressions for straight-sided tetrahedral finite elements through the fourth order. Reductions in individual source code file size by as much as 83% are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document