Biofilm formation by Non-O157 Shiga toxin-producing Escherichia coli in monocultures and co-cultures with meat processing surface bacteria

2022 ◽  
Vol 102 ◽  
pp. 103902
Author(s):  
Yuan Fang ◽  
Jeyachchandran Visvalingam ◽  
Peipei Zhang ◽  
Xianqin Yang
2020 ◽  
Vol 17 (4) ◽  
pp. 235-242 ◽  
Author(s):  
Zhi Ma ◽  
Kim Stanford ◽  
Xiao M. Bie ◽  
Yan D. Niu ◽  
Tim A. McAllister

Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1423
Author(s):  
Nicola Mangieri ◽  
Roberto Foschino ◽  
Claudia Picozzi

Shiga toxin-producing Escherichia coli are pathogenic bacteria able to form biofilms both on abiotic surfaces and on food, thus increasing risks for food consumers. Moreover, biofilms are difficult to remove and more resistant to antimicrobial agents compared to planktonic cells. Bacteriophages, natural predators of bacteria, can be used as an alternative to prevent biofilm formation or to remove pre-formed biofilm. In this work, four STEC able to produce biofilm were selected among 31 different strains and tested against single bacteriophages and two-phage cocktails. Results showed that our phages were able to reduce biofilm formation by 43.46% both when used as single phage preparation and as a cocktail formulation. Since one of the two cocktails had a slightly better performance, it was used to remove pre-existing biofilms. In this case, the phages were unable to destroy the biofilms and reduce the number of bacterial cells. Our data confirm that preventing biofilm formation in a food plant is better than trying to remove a preformed biofilm and the continuous presence of bacteriophages in the process environment could reduce the number of bacteria able to form biofilms and therefore improve the food safety.


2012 ◽  
Vol 159 (3) ◽  
pp. 186-192 ◽  
Author(s):  
Shaun M. Harris ◽  
Wan-Fu Yue ◽  
Sarena A. Olsen ◽  
Jia Hu ◽  
Warrie J. Means ◽  
...  

2013 ◽  
Vol 76 (9) ◽  
pp. 1513-1522 ◽  
Author(s):  
RONG WANG ◽  
NORASAK KALCHAYANAND ◽  
JOHN W. SCHMIDT ◽  
DAYNA M. HARHAY

Shiga toxin–producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.


2021 ◽  
Vol 9 (12) ◽  
pp. 2510
Author(s):  
Zhi Ma ◽  
Xia Tang ◽  
Kim Stanford ◽  
Xiaolong Chen ◽  
Tim A. McAllister ◽  
...  

Shiga toxin-producing Escherichia coli (STEC) and Salmonella enterica are important foodborne pathogens capable of forming both single- and multi-species biofilms. In this study, the mono- and dual-species biofilms were formed by STEC O113:H21 and Salmonella enterica serovar Choleraesuis 10708 on stainless steel in the presence of beef juice over 5 d at 22 °C. The dual-species biofilm mass was substantially (p < 0.05) greater than that produced by STEC O113:H21 or S. Choleraesuis 10708 alone. However, numbers (CFU/mL) of S. Choleraesuis 10708 or STEC O113:H21 cells in the dual-species biofilm were (p < 0.05) lower than their respective counts in single-species biofilms. In multi-species biofilms, the sensitivity of S. Choleraesuis 10708 to the antimicrobial peptide WK2 was reduced, but it was increased for STEC O113:H21. Visualization of the temporal and spatial development of dual-species biofilms using florescent protein labeling confirmed that WK2 reduced cell numbers within biofilms. Collectively, our results highlight the potential risk of cross-contamination by multi-species biofilms to food safety and suggest that WK2 may be developed as a novel antimicrobial or sanitizer for the control of biofilms on stainless steel.


Author(s):  
Miriam Gonçalves Marquezini ◽  
Luis Henrique da Costa ◽  
Renata Bromberg

Healthy cattle are considered the main reservoir of Shiga toxin-producing Escherichia coli (STEC) strains, so in some places in the world, products derived from beef are the most common source for disease outbreaks caused by these bacteria. Therefore, in order to guarantee that the beef produced by our slaughterhouses is safe, there is a need for continuous monitoring of these bacteria. In this study, 215 beef cuts were evaluated, including chilled vacuum-packed striploins (151 samples), rib eyes (30 samples), and knuckles (34 samples), from March to June, 2018. These meat samples were collected from the slaughter of unconfined cattle, being arbitrarily collected from eight meat-processing companies in São Paulo state, Brazil. Each sample was examined for the presence of STEC toxin type ( stx 1 and/or stx 2 genes) and also the E. coli attaching-and-effacing ( eae ) gene, which were determined by a multiplex PCR assay. Here we show that the major seven STEC strains (O serogroups O26, O45, O103, O111, O121, O145, and O157) are not detected in any of the analyzed beef cut samples; however, three of them presented the virulence eae gene. Therefore, the absence of STEC strains in the beef samples may be an indication of the low prevalence of this pathogen in the cattle herd on the farm, associated with good hygiene and handling practices adopted by the meat industry.


Author(s):  
Cindy Joanna Caballero-Prado ◽  
Jose Angel Merino-Mascorro ◽  
Norma Heredia ◽  
Jorge Dávila-Aviña ◽  
Santos García

2021 ◽  
Vol 9 (11) ◽  
pp. 2320
Author(s):  
Daniel A. Unruh ◽  
Bennett C. Uhl ◽  
Randall K. Phebus ◽  
Sara E. Gragg

Shiga toxin-producing Escherichia coli (STEC) has caused numerous foodborne illness outbreaks where beef was implicated as the contaminated food source. Understanding how STEC attach to beef surfaces may inform effective intervention applications at the abattoir. This simulated meat processing conditions to measure STEC attachment to adipose and lean beef tissue. Beef brisket samples were warmed to a surface temperature of 30 °C (warm carcass), while the remaining samples were maintained at 4 °C (cold carcass), prior to surface inoculation with an STEC cocktail (O26, O45, O103, O111, O121, O145, and O157:H7). Cocktails were grown in either tryptic soy broth (TSB) or M9 minimal nutrient medium. Loosely and firmly attached cells were measured at 0, 3, 5, and 20 min and 1, 3, 8, 12, 24 and 48 h. TSB-grown STEC cells became more firmly attached throughout storage and a difference in loosely versus firmly attached populations on lean and adipose tissues was observed. M9-grown STEC demonstrated a 0.2 log10 CFU/cm2 difference in attachment to lean versus adipose tissue and variability in populations was recorded throughout sampling. Future research should investigate whether a decrease in intervention efficacy correlates to an increase in firmly attached STEC cells on chilled carcasses and/or subprimals, which has been reported.


2019 ◽  
Vol 7 (4) ◽  
pp. 95 ◽  
Author(s):  
Zhi Ma ◽  
Emmanuel W. Bumunang ◽  
Kim Stanford ◽  
Xiaomei Bie ◽  
Yan D. Niu ◽  
...  

Forming biofilm is a strategy utilized by Shiga toxin-producing Escherichia coli (STEC) to survive and persist in food processing environments. We investigated the biofilm-forming potential of STEC strains from 10 clinically important serogroups on stainless steel at 22 °C or 13 °C after 24, 48, and 72 h of incubation. Results from crystal violet staining, plate counts, and scanning electron microscopy (SEM) identified a single isolate from each of the O113, O145, O91, O157, and O121 serogroups that was capable of forming strong or moderate biofilms on stainless steel at 22 °C. However, the biofilm-forming strength of these five strains was reduced when incubation time progressed. Moreover, we found that these strains formed a dense pellicle at the air-liquid interface on stainless steel, which suggests that oxygen was conducive to biofilm formation. At 13 °C, biofilm formation by these strains decreased (P < 0.05), but gradually increased over time. Overall, STEC biofilm formation was most prominent at 22 °C up to 24 h. The findings in this study identify the environmental conditions that may promote STEC biofilm formation in food processing facilities and suggest that the ability of specific strains to form biofilms contributes to their persistence within these environments.


Sign in / Sign up

Export Citation Format

Share Document